Skip to main content

Mikrotechnologien

  • Chapter
Sensortechnik

Part of the book series: VDI-Buch ((VDI-BUCH))

  • 51k Accesses

Zusammenfassung

Die Prozesse der Mikrotechnologien entstammen zum Großteil den Fertigungsmethoden der Mikroelektronik. Hinzu kommen verschiedene Sonderprozesse und Methoden, die speziell für die Herstellung von Mikrosensoren und Mikroaktoren entwickelt wurden. Weil diese Prozesse in der Regel eine besonders reine Arbeitsumgebung erfordern, wird am Anfang dieses Kapitels zunächst auf die grundsätzlichen Anforderungen an Reinräume eingegangen. Es werden dann die wichtigsten Prozesse der Siliziumtechnologie, der Mikromechanik, der Schichttechniken, der Verbindungs- und Kontaktiertechniken und der LIGA-Technik behandelt. Diese Ausführungen können im Rahmen dieses Handbuches naturgemäß nur in Form einer Übersicht erfolgen. Ausführliche Darstellungen dazu finden sich in der einschlägigen Spezialliteratur am Ende dieses Kapitels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Abu-Zeid MM (1984) Corner undercutting in anisotropically etched isolation contours. J Electrochem Soc 131:2138

    Article  Google Scholar 

  • Barth PW (1990) Silicon fusion bonding for fabrication of sensors, actuators and microstructures. Sens Actuators A21–A23:919

    Article  Google Scholar 

  • Bassous E (1978) Fabrication of novel three dimensional microstructures by anisotropic etching of (100) and (110) silicon. IEEE Trans Electron Devices 25:1178

    Article  Google Scholar 

  • de Boer M, Jansen H, Elwenspoek M (1995) The black silicon method v: a study of the fabrication of movable structures for micro electromechanical systems. Digest of technical papers, 8th international conference on solid-state sensors and actuators (Transducers ‘95), Stockholm, S 565

    Google Scholar 

  • Brand FH, KT (2009) LIGA and its applications. Weinheim

    Google Scholar 

  • Büttgenbach S (1994) Mikromechanik. Teubner-Verlag

    Google Scholar 

  • Christel L, Petersen K, Barth P, Mallon J, Bryzek J (1990) Single crystal silicon pressure sensors with 500x overpressure protection. Sens Actuators A21–A23:84

    Google Scholar 

  • Diem B, Truche R, Viollet-Bosson S, Delapierre G (1990) „SIMOX“ (Separation by Ion Implantation of Oxygen). A technology for high-temperature silicon sensors. Sens Actuators A21–A23:1003

    Google Scholar 

  • Dura HG, Betz J, Mokwa W, Vogt H, Zimmer G (1990) Batch process for the production of single crystal silicon membranes by the use of SIMOX-wafer. Technical Digest MME ‘90 Workshop, Berlin, S 31

    Google Scholar 

  • Ehrfeld W, Abraham M, Ehrfeld U, Lacher M, Lehr H (1994) Materials for LIGA products. In: Proceedings of IEEE micro electro mechanical systems workshop, Oiso, S 86

    Google Scholar 

  • Esashi ME, Nakano A, Shoji S, Hebiguchi H (1990) Low-temperature silicon-to-silicon anodic bonding with intermediate low melting point glass. Sens Actuators A21–A23:931

    Article  Google Scholar 

  • Fan L-S, Tai Y-C, Muller RS (1987) Pinjoints, gears, springs, cranks, and other novel micromechanical structures. Digest of the technical papers, 4th international conference on solid-state sensors and actuators (Transducers ‘87), Tokyo, S 849

    Google Scholar 

  • Fan L-S, Tai Y-C, Muller RS (1988) Integrated movable micromechanical structures for sensors and actuators. IEEE Trans Electron Devices 35:724

    Article  Google Scholar 

  • Frey H, Kienel G (Hrsg) (1987) Dünnschichttechnologie. VDI-Verlag

    Google Scholar 

  • Fricke J, Obermeier E (1995) Surface micromachined accelerometer based on a torsional moving structure. Digest of the technical papers, 8th international conferance on solid-state sensors and actuators (Transducers ‘95), Stockholm, 542

    Google Scholar 

  • Ghandhi SK (1983) VLSI fabrication principles. Wiley, Device Fabrication. McGraw-Hill

    Google Scholar 

  • Glembocki OJ, Stahlbush RE, Tomkiewicz M (1985) Biasdependent etching of silicon in aqueous KOH. J Electrochem Soc 132:145

    Article  Google Scholar 

  • Hacke H-J (1987) Montage Integrierter Schaltungen. Springer

    Google Scholar 

  • Haefer RA (1987) Oberflächen- und Dünnschicht-Technologie, Teil I. Springer

    Google Scholar 

  • Hanneborg A (1991) Silicon wafer bonding techniques for assembly of micromechanical elements. In: Proceedings of the IEEE micro electro mechanical systems workshop, Nara, 92

    Google Scholar 

  • Heuberger A (Hrsg) (1989) Mikromechanik. Springer

    Google Scholar 

  • Hirano T, Furuhata T, Gabriel KJ, Fujita H (1991) Operation of sub-micron gap electronic comb-drive actuators. Digest of the technical papers, international conference on solid-state sensors and actuators (Transducers ‘93), San Francisco, 873

    Google Scholar 

  • Holmes PJ, Loasby RG (1976) Handbook of thick film technology. Electrochemical Publications Limited

    Google Scholar 

  • Hosack HH, Houston TW, Pollock, GP (1990) SIMOX silicon-on-insulator: materials and devices. Solid State Technol 12:61

    Google Scholar 

  • Jackson TN, Tischler MA, Wise KD (1981) An electrochemical pn-junction etch-stop for the formation of silicon microstructures. IEEE Electron Device Lett 2:44

    Article  Google Scholar 

  • Jaecklin VP, Linder C, de Rooij NF, Moret JM (1992) Micromechanical comb actuators with low driving voltage. J Micromech Microeng 2:250

    Article  Google Scholar 

  • Jones DR (1982) Hybrid circuit design and manufacture. Marcel Dekker

    Google Scholar 

  • Juan WH, Pang SW (1995) A novel etch-diffusion process for fabricating high aspect ratio si microstructures. Digest of the technical papers, 8th international conference on solid-state sensors and actuators (Transducers‘95), Stockholm, 560

    Google Scholar 

  • Kalem S, Werner P, Arthursson Ö, Talalaev V, Nilsson B, Hagberg M, Frederiksen H, Södervall U (2011) Black silicon with high density and high aspect ratio nanowhiskers. Nanotechnology 22(23):235307

    Article  Google Scholar 

  • Kienel G (Hrsg) (1993) Vakuum-Beschichtung 4 – Anwendungen Teil I. VDI-Verlag GmbH

    Google Scholar 

  • Klaassen EH, Petersen K, Noworolski JM, Logan J, Maluf NI, Brown J, Storment Ch, McCulley W, Kovacs GTA (1995) Silicon fusion bonding and deep reactive ion etching; a new technology for micro structures. Digest of the technical papers, 8th internatinal conference on solid-state sensors and actuators (Transducers ‘95), Stockholm, 556

    Google Scholar 

  • Kleber W (1983) Einführung in die Kristallographie. VEB Verlag Technik, Berlin

    Google Scholar 

  • Ko WH, Suminto JT Yeh GJ (1985) Bonding techniques for microsensors. In: Fung CD, Cheung PW, Ko WH, Fleming DG (Hrsg) Micromachining and micropackaging of transducers. Elsevier Science Publishers B.V, Amsterdam

    Google Scholar 

  • Kovacs G, Maluf N, Petersen K (1998) Bulk micromachining of silicon. Proc IEEE 86(8):1536–51

    Article  Google Scholar 

  • Krause P, Sporys M, Obermeier E, Lange K, Grigull S (1995) Silicon to silicon anodic bonding using evaporated glass. Digest of the technical papers, 8th international conference on solid-state sensors and actuators (Transducers ‘95), Stockholm, 228

    Google Scholar 

  • Laermer F, Urban A (2005) Milestones in deep reactive ion etching, solid state sensors, actuators and microsystems. Digest of technical papers. Transducers ‘05, Bd. 2, S 1118–21

    Google Scholar 

  • Lasky JB (1986) Waferbonding for silicon-on-insulator technologies. Appl Phys Lett 48:78

    Article  Google Scholar 

  • Lee DP (1969) Anisotropic etching of silicon. J Appl Phys 40:4569

    Article  Google Scholar 

  • McGuire GE (Hrsg) (1988) Semiconductor materials and process technology handbook. Noyes Publications

    Google Scholar 

  • Meek RL (1971) Anodic dissolution of nþ-silicon. J Electrochem Soc 118:437

    Article  Google Scholar 

  • Menz W, Mohr J, Paul O (2005) Mikrosystemtechnik für Ingenieure, 3. Aufl. Weinheim

    Google Scholar 

  • Menz W (1995) LIGA and related technologies for industrial application. Digest of the technical, 8th international conference on solid-state sensors and actuators (Transducers ‘95), Stockholm, S 552

    Google Scholar 

  • Microchemicals GmbH: Thick Resist Processing. http://www.microchemicals.eu/technical_information/thick_resist_processing.pdf. Zugegriffen: 20. Okt 2012

  • micro resist technology GmbH: Erzeugung dreidimensionaler Mikrostrukturen - „Mikrostruk“. http://www.microresist.de/projekte/mikrostruk_de.htm. Zugegriffen: 22. Okt 2012

  • Middleman S, Hochberg AK (1993) Process engineering analysis in semiconductor device fabrication. Mc Graw-Hill

    Google Scholar 

  • Mohr J, Bley P, Strohrmann M, Wallrabe U (1992) Microactuators fabricated by the LIGA process. J Micromech Microeng 2:234

    Article  Google Scholar 

  • Movchan BA (1969) Demchishin: study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminium oxide and zirconium dioxide. Phys Met Metallogr 28:83

    Google Scholar 

  • Muller RS (1990) Microdynamics. Sens Actuators A21–A23:1

    Google Scholar 

  • O’Mara WC, Herring RB, Hunt LP (Hrsg) (1990) Handbook of semiconductor silicon technology. Noyes Publications

    Google Scholar 

  • Owen KJ, VanDerElzen B, Peterson RL, Najafi K (2012) High aspect ratio deep silicon etching. S 251–54

    Google Scholar 

  • Petersen KE (1982) Silicon as a mechanical material. Proc IEEE 70:420

    Article  Google Scholar 

  • Petersen K, Brown J, Barth P, Mallon J, Bryzek J (1990) Ultra-stable high temperature pressure sensors using silicon fusion bonding. Sens Actuators A21–A23:96

    Google Scholar 

  • Pollak-Diener G (1989) Verbindungsverfahren für Mikrosensoren und Mikroaktuatoren. Seminarband AMA-Seminar Mikromechanik, Heidelberg, S 269

    Google Scholar 

  • Price JB (1973) Anisotropic etching of silicon with KOH-H2O-isopropyl alcohol. In: Huff HR, Burgers RR (Hrsg) Semiconductor silicon. In: The electrochemical society softbound symposium ser., Princeton, S 339

    Google Scholar 

  • Puers B, Sansen W (1990) Compensation structures for convex corner micromachining in silicon. Sens Actuators A21–A23:1036

    Article  Google Scholar 

  • Reichl H (Hrsg) (1988) Hybridintegration. Dr. Alfred Hüthig Verlag

    Google Scholar 

  • Reisman A, Berkenblit M, Chan SA, Kaufmann FB, Green DC (1979) The controlled etching of silicon in catalyzed ethylendiamine-pyrocatechol-water solutions. J Electrochem Soc 126:1406

    Article  Google Scholar 

  • Robbins R, Schwartz B (1960) Chemical etching of silicon. J Electrochem Soc 107(2)108

    Article  Google Scholar 

  • Ruge I (1984) Halbleiter-Technologie. Springer

    Google Scholar 

  • Ryssel H, Ruge I (1978) Ionenimplantation. Teubner Verlag

    Google Scholar 

  • Schmidt D, Bley P, Ehrfeld W, Götz F, Mohr J, Münchmeyer D (1989) Mikrostrukturierung nach dem LIGA-Verfahren. Seminarband AMA-Seminar Mikromechanik, Heidelberg, S 95

    Google Scholar 

  • Schnegraf KK (Hrsg) (1988) Handbook of thin-film deposition processes and techniques. Noyes Publications

    Google Scholar 

  • Schneider HG, Ickert L (1984) Halbleiterepitaxie. Dr. Alfred Hüthig Verlag

    Google Scholar 

  • Schraft RD, Schmutz Wv, Kahlden Th (1990) Fertigen im Reinraum. Swiss Contam Control 5:7

    Google Scholar 

  • Schumicki G, Seegebrecht P (1991) Prozeßtechnologie. Springer

    Google Scholar 

  • Seidel H (1987) The mechanism of anisotropic silicon etching and its relevance for micromachining. Digest of the technical papers, 4th international conference on solid-state sensors and actuators (Transducers ‘87), Tokyo, S 120

    Google Scholar 

  • Seitz D (Hrsg) (1988) Reinraumtechnik. expert-Verlag

    Google Scholar 

  • Sherman A (1987) Chemical vapor deposition for microelectronics-pinziples. Technology and Applications. Noyes Publications

    Google Scholar 

  • Shimbo M, Furukuwa K, Fukuda K, Tanazawa K (1986) Silicon-to-silicon direct bonding method. J Appl Phys 60:2987

    Article  Google Scholar 

  • Sze SM (1988) VLSI technology. McGraw-Hill

    Google Scholar 

  • Tabelleta O, Ashai R, Sugiyama S (1990) Anisotropic etching of silicon with quaternary ammoniumhydroxide solutions. Digest of the technical papers, 9th sensor symposium, Japan, S 15

    Google Scholar 

  • Thronton JA (1974) Influence of apparatur geometry and deposition conditions on the structure and topography of thick sputtered coatings. J Vac Sci Technol 11:666

    Article  Google Scholar 

  • Turner DR (1958) Electropolishing silicon in hydrofluoric acid solutions. J Electrochem Soc 105:402

    Article  Google Scholar 

  • Völklein F, Zetterer T (2006) Praxiswissen Mikrosystemtechnik: Grundlagen, Technologien, Anwendungen, 2. Aufl. Wiesbaden

    Google Scholar 

  • Waggener HA (1970) Electrochemically controlled thinning of silicon. Bell System Tech J 59:473

    Article  Google Scholar 

  • Walker MJ, Fallon M, Kissinger G, Behringer UFW, Mack CA, Stevenson T, Uttamchandani DG, Weiland LH (2001) In: SPIE Proceedings

    Google Scholar 

  • Wallis G, Pommerantz DI (1969) Field assisted glass-metal sealing. J Appl Phys 40:3946

    Article  Google Scholar 

  • Wangler N, Beck S, Ahrens, G, Voigt A, Grützner G, Müller C, Reinecke H (2012) Ultra thick epoxy-based dry-film resist for high aspect ratios. Microelectron Eng 97:92–95

    Article  Google Scholar 

  • Wangler N, Gutzweiler L, Kalkandjiev K, Müller C, Mayenfels F, Reinecke H, Zengerle R, Paust N, (2011) High-resolution permanent photoresist laminate TMMF for sealed microfluidic structures in biological applications. J Micromech Microeng 21(9):95009

    Article  Google Scholar 

  • Widmann D, Mader H, Friedrich H (1996) Technologie hochintegrierter Schaltungen. 2. Aufl. Springer, Berlin

    Book  Google Scholar 

  • Wolf S, Tauber RN (1986) Silicon processing for the VLSI era. Process technology, Bd. 1. Lattice Press

    Google Scholar 

  • Wu X, Ko, W H (1987) A study of compensating corner undercutting in anisotropic etching of (100) silicon. In: Digest of the technical papers, 4th international conference on solid-state sensors and actuators (Transducer ‘87), Tokyo, S 126

    Google Scholar 

  • Wyte W (1992) Cleanroom design. Wiley

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Reinecke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reinecke, H., Müller, C. (2014). Mikrotechnologien. In: Tränkler, HR., Reindl, L. (eds) Sensortechnik. VDI-Buch. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29942-1_6

Download citation

Publish with us

Policies and ethics