Advertisement

Abstract

A standard SPA protection for RSA implementations is exponent blinding (see [7]). Fouque et al., [4] and more recently Schindler and Itoh, [8] have described side-channel attacks against such implementations. The attack in [4] requires that the attacker knows some bits of the blinded exponent with certainty. The attack methods of [8] can be defeated by choosing a sufficiently large blinding factor (about 64 bit).

In this paper we start from a more realistic model for the information an attacker can obtain by simple power analysis (SPA) than the one that forms the base of the attack in [4]. We show how the methods of [4] can be extended to work in this setting. This new attack works, under certain restrictions, even for long blinding factors (i.e. 64 bit or more).

Keywords

SPA RSA exponent blinding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boneh, D.: Twenty Years of Attacks on the RSA Cryptosystem. Notices of the AMS 46, 203–213 (1999)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Chari, S., Rao, J.R., Rohatgi, P.: Template Attacks. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Horizontal Correlation Analysis on Exponentiation. Cryptology ePrint Archive, Report 2010/394 (2010), http://eprint.iacr.org/2010/394
  4. 4.
    Fouque, P.-A., Kunz-Jacques, S., Martinet, G., Muller, F., Valette, F.: Power Attack on Small RSA Public Exponent. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 339–353. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino, J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest We Remember: Cold Boot Attacks on Encryption Keys. In: 2008 USENIX Security Symposium (2008), http://www.usenix.org/events/sec08/tech/full_papers/halderman/halderman.pdf
  6. 6.
    Heninger, N., Shacham, H.: Reconstructing RSA Private Keys from Random Key Bits. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 1–17. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)Google Scholar
  8. 8.
    Schindler, W., Itoh, K.: Exponent Blinding Does Not Always Lift (Partial) Spa Resistance to Higher-Level Security. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 73–90. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Walter, C.D.: Sliding Windows Succumbs to Big Mac Attack. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 286–299. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sven Bauer
    • 1
  1. 1.Giesecke & Devrient GmbHMunichGermany

Personalised recommendations