MDASCA: An Enhanced Algebraic Side-Channel Attack for Error Tolerance and New Leakage Model Exploitation

  • Xinjie Zhao
  • Fan Zhang
  • Shize Guo
  • Tao Wang
  • Zhijie Shi
  • Huiying Liu
  • Keke Ji
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7275)


Algebraic side-channel attack (ASCA) is a powerful cryptanalysis technique different from conventional side-channel attacks. This paper studies ASCA from three aspects: enhancement, analysis and application. To enhance ASCA, we propose a generic method, called Multiple Deductions-based ASCA (MDASCA), to cope the multiple deductions caused by inaccurate measurements or interferences. For the first time, we show that ASCA can exploit cache leakage models. We analyze the attacks and estimate the minimal amount of leakages required for a successful ASCA on AES under different leakage models. In addition, we apply MDASCA to attack AES on an 8-bit microcontroller under Hamming weight leakage model, on two typical microprocessors under access driven cache leakage model, and on a 32-bit ARM microprocessor under trace driven cache leakage model. Many better results are achieved compared to the previous work. The results are also consistent with the theoretical analysis. Our work shows that MDASCA poses great threats with its excellence in error tolerance and new leakage model exploitation.


Algebraic side-channel attack Multiple deductions Hamming weight leakage Cache leakage AES 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Acıïçmez, O., Koç, Ç.: Trace Driven Cache Attack on AES. In: Rhee, M.S., Lee, B. (eds.) ICISC 2006. LNCS, vol. 4296, pp. 112–121. Springer, Heidelberg (2006)Google Scholar
  2. 2.
    Bangerter, E., Gullasch, D., Krenn, S.: Cache Games - Bringing Access-Based Cache Attacks on AES to Practice. In: IEEE S&P 2011, pp. 490–505 (2011)Google Scholar
  3. 3.
    Batina, L., Gierlichs, B., Prouff, E., Rivain, M., Standaert, F.X., Veyrat-Charvillon, N.: Mutual Information Analysis: A Comprehensive Study. Journal of Cryptology 24, 269–291 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bernstein, D.J.: Cache-timing attacks on AES (2004),
  5. 5.
    Berthold, T., Heinz, S., Pfetsch, M.E., Winkler, M.: SCIP C solving constraint integer programs. In: SAT 2009 (2009)Google Scholar
  6. 6.
    Bertoni, G., Zaccaria, V., Breveglieri, L., Monchiero, M., Palermo, G.: AES Power Attack Based on Induced Cache Miss and Countermeasure. In: ITCC 2005, pp. 586–591. IEEE Computer Society (2005)Google Scholar
  7. 7.
    Bonneau, J.: Robust Final-Round Cache-Trace Attacks Against AES. Cryptology ePrint Archive (2006),
  8. 8.
    Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Courtois, N., Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined Systems of Equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 267–287. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Courtois, N., Ware, D., Jackson, K.: Fault-Algebraic Attacks on Inner Rounds of DES. In: eSmart 2010, pp. 22–24 (September 2010)Google Scholar
  11. 11.
    Dinur, I., Shamir, A.: Side Channel Cube Attacks on Block Ciphers. Cryptology ePrint Archive (2009),
  12. 12.
    Faugère, J.-C.: Gröbner Bases. Applications in Cryptology. In: FSE 2007 Invited Talk (2007),
  13. 13.
    Fournier, J., Tunstall, M.: Cache Based Power Analysis Attacks on AES. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 17–28. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Gallais, J., Kizhvatov, I., Tunstall, M.: Improved Trace-Driven Cache-Collision Attacks against Embedded AES Implementations. In: Chung, Y., Yung, M. (eds.) WISA 2010. LNCS, vol. 6513, pp. 243–257. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Gallais, J., Kizhvatov, I.: Error-Tolerance in Trace-Driven Cache Collision Attacks. In: COSADE 2011, pp. 222–232 (2011)Google Scholar
  16. 16.
    Goyet, C., Faugre, J., Renault, G.: Analysis of the Algebraic Side Channel Attack. In: COSADE 2011, pp. 141–146 (2011)Google Scholar
  17. 17.
    Handschuh, H., Preneel, B.: Blind Differential Cryptanalysis for Enhanced Power Attacks. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 163–173. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)Google Scholar
  19. 19.
    Knudsen, L.R., Miolane, C.V.: Counting equations in algebraic attacks on block ciphers. International Journal of Information Security 9(2), 127–135 (2010)CrossRefGoogle Scholar
  20. 20.
    Lauradoux, C.: Collision Attacks on Processors with Cache and Countermeasures. In: WEWoRC 2005. LNI, vol. 74, pp. 76–85 (2005)Google Scholar
  21. 21.
    Improved Differential Fault Analysis of Trivium. In: COSADE 2011, pp. 147–158 (2011)Google Scholar
  22. 22.
    Neve, M., Seifert, J.: Advances on Access-Driven Cache Attacks on AES. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 147–162. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    FIPS 197, Advanced Encryption Standard, Federal Information Processing Standard, NIST, U.S. Dept. of Commerce, November 26 (2001)Google Scholar
  24. 24.
    Oren, Y., Kirschbaum, M., Popp, T., Wool, A.: Algebraic Side-Channel Analysis in the Presence of Errors. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 428–442. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  25. 25.
    Osvik, D.A., Shamir, A., Tromer, E.: Cache Attacks and Countermeasures: The Case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  26. 26.
    Percival, C.: Cache missing for fun and profit (2005),
  27. 27.
    Renauld, M., Standaert, F.-X.: Algebraic Side-Channel Attacks. In: Bao, F., Yung, M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 393–410. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  28. 28.
    Renauld, M., Standaert, F., Veyrat-Charvillon, N.: Algebraic Side-Channel Attacks on the AES: Why Time also Matters in DPA. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 97–111. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  29. 29.
    Renauld, M., Standaert, F.-X.: Representation-, Leakage- and Cipher- Dependencies in Algebraic Side-Channel Attacks. In: Industrial Track of ACNS 2010 (2010)Google Scholar
  30. 30.
    Roche, T.: Multi-Linear cryptanalysis in Power Analysis Attacks. MLPA CoRR abs/0906.0237 (2009)Google Scholar
  31. 31.
    Schramm, K., Wollinger, T.J., Paar, C.: A New Class of Collision Attacks and Its Application to DES. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 206–222. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  32. 32.
    Shannon, C.E.: Communication theory of secrecy systems. Bell System Technical Journal 28 (1949); see in particular page 704 Google Scholar
  33. 33.
    Soos, M., Nohl, K., Castelluccia, C.: Extending SAT Solvers to Cryptographic Problems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  34. 34.
    Whitnall, C., Oswald, E., Mather, L.: An Exploration of the Kolmogorov-Smirnov Test as Competitor to Mutual Information Analysis. Cryptology ePrint Archive (2011),

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Xinjie Zhao
    • 1
  • Fan Zhang
    • 2
  • Shize Guo
    • 3
  • Tao Wang
    • 1
  • Zhijie Shi
    • 2
  • Huiying Liu
    • 1
  • Keke Ji
    • 1
  1. 1.Ordnance Engineering CollegeShijiazhuangChina
  2. 2.University of ConnecticutStorrsUSA
  3. 3.The Institute of North Electronic EquipmentBeijingChina

Personalised recommendations