Advertisement

The Schindler-Itoh-attack in Case of Partial Information Leakage

  • Alexander Krüger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7275)

Abstract

Schindler and Itoh proposed a side-channel attack on implementations of the double-and-add-algorithm with blinded exponents, where dummy additions can be detected with errors. Here this approach is generalized to partial information leakage: If window methods are used, several different types of additions occur. If the attacker can only discriminate between some types of additions, but not between all types, the so-called basic version of the attack is still feasible and the attacker can correct her guessing errors and find out the secret scalar. Sometimes generalized Schindler-Itoh methods can reveal even more bits than leak by SPA. In fact this makes an attack on a 2bit-window-algorithm feasible for a 32-bit randomization, where the attacker can distinguish between additions of different values with error rates up to 0.15, but cannot detect dummy additions. A barrier to applying the so-called enhanced version to partial information leakage is described.

Keywords

side-channel analysis SPA Schindler-Itoh-attack window-methods partial information leakage dummy operations exponent randomization elliptic curve cryptographys 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Coron, J.-S.: Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Fouque, P.-A., Kunz-Jacques, S., Martinet, G., Muller, F., Valette, F.: Power Attack on Small RSA Public Exponent. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 339–353. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Itoh, K., Izu, T., Takenaka, M.: A Practical Countermeasure against Address-Bit Differential Power Analysis. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 382–396. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Krüger, A.: Kryptographie mit elliptischen Kurven und Angriffe darauf (Elliptic Curce Cryptography and Attacks on it). Bachelor thesis, University of Bonn (2011)Google Scholar
  5. 5.
    Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press (1996)Google Scholar
  6. 6.
    Schindler, W., Itoh, K.: Exponent Blinding Does Not Always Lift (Partial) Spa Resistance to Higher-Level Security. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 73–90. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alexander Krüger
    • 1
  1. 1.SRC - Security Research & Consulting GmbHBonnGermany

Personalised recommendations