The Schindler-Itoh-attack in Case of Partial Information Leakage

  • Alexander Krüger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7275)


Schindler and Itoh proposed a side-channel attack on implementations of the double-and-add-algorithm with blinded exponents, where dummy additions can be detected with errors. Here this approach is generalized to partial information leakage: If window methods are used, several different types of additions occur. If the attacker can only discriminate between some types of additions, but not between all types, the so-called basic version of the attack is still feasible and the attacker can correct her guessing errors and find out the secret scalar. Sometimes generalized Schindler-Itoh methods can reveal even more bits than leak by SPA. In fact this makes an attack on a 2bit-window-algorithm feasible for a 32-bit randomization, where the attacker can distinguish between additions of different values with error rates up to 0.15, but cannot detect dummy additions. A barrier to applying the so-called enhanced version to partial information leakage is described.


side-channel analysis SPA Schindler-Itoh-attack window-methods partial information leakage dummy operations exponent randomization elliptic curve cryptographys 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Coron, J.-S.: Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Fouque, P.-A., Kunz-Jacques, S., Martinet, G., Muller, F., Valette, F.: Power Attack on Small RSA Public Exponent. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 339–353. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Itoh, K., Izu, T., Takenaka, M.: A Practical Countermeasure against Address-Bit Differential Power Analysis. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 382–396. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Krüger, A.: Kryptographie mit elliptischen Kurven und Angriffe darauf (Elliptic Curce Cryptography and Attacks on it). Bachelor thesis, University of Bonn (2011)Google Scholar
  5. 5.
    Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press (1996)Google Scholar
  6. 6.
    Schindler, W., Itoh, K.: Exponent Blinding Does Not Always Lift (Partial) Spa Resistance to Higher-Level Security. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 73–90. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alexander Krüger
    • 1
  1. 1.SRC - Security Research & Consulting GmbHBonnGermany

Personalised recommendations