Advertisement

Differential Fault Analysis of Full LBlock

  • Liang Zhao
  • Takashi Nishide
  • Kouichi Sakurai
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7275)

Abstract

\(\textsf{LBlock}\) is a 64-bit lightweight block cipher which can be implemented in both hardware environments and software platforms. It was designed by Wu and Zhang, and published at ACNS2011. In this paper, we explore the strength of \(\textsf{LBlock}\) against the differential fault analysis (\(\textsf{DFA}\)). As far as we know, this is the first time the \(\textsf{DFA}\) attack is used to analyze \(\textsf{LBlock}\). Our \(\textsf{DFA}\) attack adopts the random bit fault model. When the fault is injected at the end of the round from the 25 th round to the 31 st round, the \(\textsf{DFA}\) attack is used to reveal the last three round subkeys (i.e., K 32, K 31 and K 30) by analyzing the \(\textit{active S-box}\) of which the input and output differences can be obtained from the right and faulty ciphertexts (C, \(\widetilde{C}\)). Then, the master key can be recovered based on the analysis of the key scheduling. Specially, for the condition that the fault is injected at the end of the 25 th and 26 th round, we show that the active S-box can be distinguished from the \(\textit{false active S-box}\) by analyzing the nonzero differences from the pair of ciphertexts (C, \(\widetilde{C}\)). The false active S-box which we define implies that the nonzero input difference does not correspond to the right output difference. Moreover, as the \(\textsf{LBlock}\) can achieve the best diffusion in eight rounds, there can exist the countermeasures that protect the first and last eight rounds. This countermeasure raises a question whether provoking a fault at the former round of \(\textsf{LBlock}\) can reveal the round subkey. Our current work also gives an answer to the question that the \(\textsf{DFA}\) attack can be used to reveal the round subkey when the fault is injected into the 24 th round. If the fault model used in this analysis is a \(\textit{semi-random bit model}\), the round subkey can be revealed directly. Specially, the semi-random bit model corresponds to an adversary who could know the corrupted 4 bits at the chosen round but not know the exact bit in these 4 bits. Finally, the data complexity analysis and simulations show the number of necessary faults for revealing the master key.

Keywords

Differential fault analysis (\(\textsf{DFA}\)Variant Feistel structure Differential distribution Key scheduling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wu, W.-L., Zhang, L.: LBlock: A Lightweight Block Cipher. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Bogdanov, A., Knudsen, L.-R., Leander, G., Parr, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A Family of Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Leander, G., Paar, C., Poschmann, A., Schramm, K.: New Lightweight DES Variants. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 196–210. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B., Lee, C., Chang, D., Lee, J., Jeong, K., Kim, H., Kim, J., Chee, S.: HIGHT: A New Block Cipher Suitable for Low-Resource Device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 46–59. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Knudsen, L., Leander, G., Poschmann, A., Robshaw, M.J.B.: PRINTcipher: A Block Cipher for IC-Printing. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 16–32. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Yang, L., Wang, M., Qiao, S.: Side Channel Cube Attack on PRESENT. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 379–391. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Bogdanov, A., Rechberger, C.: A 3-Subset Meet-in-the-Middle Attack: Cryptanalysis of the Lightweight Block Cipher KTANTAN. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 229–240. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Özen, O., Varıcı, K., Tezcan, C., Kocair, Ç.: Lightweight Block Ciphers Revisited: Cryptanalysis of Reduced Round PRESENT and HIGHT. In: Boyd, C., González Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 90–107. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Leander, G., Abdelraheem, M.A., AlKhzaimi, H., Zenner, E.: A Cryptanalysis of PRINTcipher: The Invariant Subspace Attack. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 206–221. Springer, Heidelberg (2011)Google Scholar
  11. 11.
    Boneh, D., DeMillo, R.A., Lipton, R.J.: On the Importance of Checking Cryptographic Protocols for Faults (Extended Abstract). In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997)Google Scholar
  12. 12.
    Clavier, C.: Secret External Encodings Do not Prevent Transient Fault Analysis. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 181–194. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Hemme, L.: A Differential Fault Attack Against Early Rounds of (Triple-)DES. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 254–267. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Li, Y., Sakiyama, K., Gomisawa, S., Fukunaga, T., Takahashi, J., Ohta, K.: Fault Sensitivity Analysis. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 320–334. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Biham, E., Shamir, A.: Differential Fault Analysis of Secret Key Cryptosystems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997)Google Scholar
  16. 16.
    Czapski, M., Nikodem, M.: Error Detection and Error Correction Procedures for the Advanced Encryption Standard. Des. Codes Cryptogr. 49, 217–232 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Chen, C.N., Yen, S.M.: Differential Fault Analysis on AES Key Schedule and Some Countermeasures. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 118–129. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Moradi, A., Shalmani, M.T.M., Salmasizadeh, M.: A Generalized Method of Differential Fault Attack Against AES Cryptosystem. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 91–100. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Derbez, P., Fouque, P.-A., Leresteux, D.: Meet-in-the-Middle and Impossible Differential Fault Analysis on AES. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 274–291. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Rivain, M.: Differential Fault Analysis on DES Middle Rounds. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 457–469. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Chen, H., Wu, W.-L., Feng, D.-G.: Differential Fault Analysis on CLEFIA. In: Qing, S., Imai, H., Wang, G. (eds.) ICICS 2007. LNCS, vol. 4861, pp. 284–295. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. 22.
    Takahashi, J., Fukunaga, T.: Improved Differential Fault Analysis on CLEFIA. In: Fault Diagnosis and Tolerance in Cryptography-FDTC 2008, pp. 25–39. IEEE Computer Society Press, Los Alamitos (2008)CrossRefGoogle Scholar
  23. 23.
    Hojsík, M., Rudolf, B.: Differential Fault Analysis of Trivium. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 158–172. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Esmaeili Salehani, Y., Kircanski, A., Youssef, A.: Differential Fault Analysis of Sosemanuk. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp. 316–331. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  25. 25.
    Kircanski, A., Youssef, A.-M.: Differential Fault Analysis of HC-128. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 261–278. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  26. 26.
    Minier, M., Naya-Plasencia, M.: Some Preliminary Studies on the Differential Behavior of the Lightweight Block Cipher LBlock. In: Leander, G., Standaert, F.-X. (eds.) ECRYPT Workshop on Lightweight Cryptography, pp. 35–48 (2011), http://www.uclouvain.be/crypto/ecrypt_lc11/static/post_proceedings.pdf

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Liang Zhao
    • 1
  • Takashi Nishide
    • 1
  • Kouichi Sakurai
    • 1
  1. 1.Graduate School of Information Science and Electrical EngineeringKyushu UniversityFukuokaJapan

Personalised recommendations