Skip to main content

Demenz und Diabetes mellitus

  • Chapter
  • First Online:
Psychodiabetologie

Zusammenfassung

Demenz ist ein Verlust geistiger Leistungen von solcher Schwere, dass der Alltag nicht mehr wie gewohnt allein bewältigt werden kann. Ursache sind überwiegend neurodegenerative und vaskuläre Hirnveränderungen. Ein Diabetes mellitus steigert das Risiko für alle Arten einer Demenz. In mehreren epidemiologischen Studien konnte eine Assoziation von Diabetes mellitus mit kognitiven Störungen nachgewiesen werden. Darüber hinaus wurde ein Zusammenhang von Diabetes mit Demenzerkrankungen allgemein sowie insbesondere mit der vaskulären Demenz und der Alzheimer-Demenz nachgewiesen. Die meisten Studien zeigen eine Risikoerhöhung für die vaskuläre Demenz etwa von 100–150 % und für die Alzheimer-Demenz von 50–100 % im Vergleich zu Menschen ohne Diabetes mellitus. Dabei erhöht sich das Risiko umso mehr, je länger der Diabetes besteht und je länger er nicht suffizient behandelt wird.

Diabetes mellitus begünstigt die Neuropathologie der Alzheimer-Erkrankung. Die diabetische Makro- und Mikroangiopathie und eine pathologische Angiogenese stimulieren inflammatorische Prozesse, führen zu einer chronischen Hypoxie und fördern die Bildung von β‑Amyloid-Plaques und Neurofibrillenbündeln. Der gestörte Glukosemetabolismus führt zur Bildung reaktiver Sauerstoff- und Stickstoffspezies, die ebenfalls inflammatorische Vorgänge begünstigen, Zellen direkt schädigen, und die Bildung von β‑Amyloid und hyperphosphoryliertem Τ‑Protein fördern. Glykation führt zu mitochrondrialer Dysfunktion und hat die Bildung von β‑Amyloid-Plaques und die Akkumulation von Neurofibrillen aus Τ‑Protein zur Folge. Chronische Hyperglykämie wie auch hypoglykämische Episoden beeinträchtigen kognitive Fähigkeiten auf Dauer. Insulin konkurriert mit β‑Amyloid um ein Insulin-abbauendes Enzym (IDE). Durch die Hyperinsulinämie wird somit der Abbau von β‑Amyloid gestört. Zahl und Sensitivität der Insulinrezeptoren nehmen auch im Gehirn ab. Durch die verringerte Insulinwirkung kommt es ebenfalls zu einer Τ‑Hyperphosphorylierung, der Abbau von Amyloid-Vorläufer-Protein wird zudem behindert. β‑Amyloid wiederum erhöht die Insulinresistenz im Gehirn, so dass die pathophysiologischen Prozesse von Diabetes mellitus und Alzheimer-Demenz sich teilweise gegenseitig verstärken. Ein Lebensstil mit regelmäßiger körperlicher Aktivität und mediterraner Diät ist mit einem geringeren Risiko auch für Demenz assoziiert. Antidiabetika wie Metformin und Insulinsensitizer zeigen eine positive Wirkung auf kognitive Leistungen. Die intranasale Insulingabe hat in Studien bereits einen positiven Effekt auf die kognitive Leistungsfähigkeit gezeigt und ist ein vielversprechender neuer Ansatz in der Therapie der Alzheimer-Demenz. Aufgrund seiner hohen Inzidenz hat der Diabetes mellitus eine wichtige epidemiologische Rolle bei der Entstehung der Demenz. Angesichts derzeit weltweit über 30 Mio. an Alzheimer-Demenz Erkrankten, kommt dem Diabetes bei der Prävention und Therapie eine besondere Bedeutung zu.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Akiyama H, Barger S, Barnum S, Bradt B, Cooper NR, Cole GM, Bauer J et al (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21(3):383–421

    Article  PubMed  CAS  Google Scholar 

  • Anandatheerthavarada HK, Biswas G, Robin MA, Avadhani NG (2003) Mitochondrial targeting and a novel transmembrane arrest of Alzheimer’s amyloid precursor protein impairs mitochondrial function in neuronal cells. J Cell Biol 161(1):41–54

    Article  PubMed  CAS  Google Scholar 

  • Arvanitakis Z, Wilson RS, Bienias JL, Evans DA, Bennett DA (2004) Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Arch Neurol 61(5):661–666

    Article  PubMed  Google Scholar 

  • Baker LD, Frank LL, Foster-Schubert K, Green PS, Plymate SR, McTiernan A, Wilkinson CW et al (2010) Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch Neurol 67(1):71–79

    Article  PubMed  Google Scholar 

  • Barnes DE, Yaffe K (2011) The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol 10(9):819–828

    Article  PubMed  Google Scholar 

  • Baura GD, Foster DM, Kaiyala K, Porte D Jr., Kahn SE, Schwartz MW (1996) Insulin transport from plasma into the central nervous system is inhibited by dexamethasone in dogs. Diabetes 45(1):86–90

    Article  PubMed  CAS  Google Scholar 

  • Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE (2007) Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet 39(1):17–23

    Article  PubMed  CAS  Google Scholar 

  • Bhat R, Xue Y, Berg S, Hellberg S, Ormo M, Nilsson Y, Radesater AC, Jerning E et al (2003) Structural insights and biological effects of glycogen synthase kinase 3-specific inhibitor AR-A014418. J Biol Chem 278(46):45937–45945

    Article  PubMed  CAS  Google Scholar 

  • Biessels GJ, Gispen WH (2005) The impact of diabetes on cognition: what can be learned from rodent models? Neurobiol Aging 26(1):36–41

    Article  PubMed  Google Scholar 

  • Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P (2006) Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol 5(1):64–74

    Article  PubMed  Google Scholar 

  • Brands AM, Biessels GJ, de Haan EH, Kappelle LJ, Kessels RP (2005) The effects of type 1 diabetes on cognitive performance: a meta-analysis. Diabetes Care 28(3):726–735

    Article  PubMed  Google Scholar 

  • Brayne C, Gill C, Huppert FA, Barkley C, Gehlhaar E, Girling DM, O’Connor DW, Paykel ES (1998) Vascular risks and incident dementia: results from a cohort study of the very old. Dement Geriatr Cogn Disord 9(3):175–180

    Article  PubMed  CAS  Google Scholar 

  • Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 3(3):186–191

    Article  PubMed  Google Scholar 

  • Brustovetsky N, Brustovetsky T, Jemmerson R, Dubinsky JM (2002) Calcium-induced cytochrome c release from CNS mitochondria is associated with the permeability transition and rupture of the outer membrane. J Neurochem 80(2):207–218

    Article  PubMed  CAS  Google Scholar 

  • Buee L, Hof PR, Roberts DD, Delacourte A, Morrison JH, Fillit HM (1992) Immunohistochemical identification of thrombospondin in normal human brain and in Alzheimer’s disease. Am J Pathol 141(4):783–788

    PubMed  CAS  Google Scholar 

  • Buee L, Hof PR, Delacourte A (1997) Brain microvascular changes in Alzheimer’s disease and other dementias. Ann N Y Acad Sci 826:7–24

    Article  PubMed  CAS  Google Scholar 

  • Butterfield DA, Reed TT, Perluigi M, De Marco C, Coccia R, Keller JN, Markesbery WR, Sultana R (2007) Elevated levels of 3-nitrotyrosine in brain from subjects with amnestic mild cognitive impairment: implications for the role of nitration in the progression of Alzheimer’s disease. Brain Res 1148:243–248

    Article  PubMed  CAS  Google Scholar 

  • Carrasquillo MM, Belbin O, Zou F, Allen M, Ertekin-Taner N, Ansari M, Wilcox SL et al (2010) Concordant association of insulin degrading enzyme gene (IDE) variants with IDE mRNA, Abeta, and Alzheimer’s disease. PLoS One 5(1):8764

    Article  Google Scholar 

  • Chen Y, Zhou K, Wang R, Liu Y, Kwak YD, Ma T, Thompson RC et al (2009) Antidiabetic drug metformin (GlucophageR) increases biogenesis of Alzheimer’s amyloid peptides via up-regulating BACE1 transcription. Proc Natl Acad Sci U S A 106(10):3907–3912

    Article  PubMed  CAS  Google Scholar 

  • Cheng D, Noble J, Tang MX, Schupf N, Mayeux R, Luchsinger JA (2011) Type 2 diabetes and late-onset Alzheimer’s disease. Dement Geriatr Cogn Disord 31(6):424–430

    Article  PubMed  CAS  Google Scholar 

  • Cherbuin N, Reglade-Meslin C, Kumar R, Jacomb P, Easteal S, Christensen H, Sachdev P, Anstey KJ (2009) Risk factors of transition from normal cognition to mild cognitive disorder: the PATH through Life Study. Dement Geriatr Cogn Disord 28(1):47–55

    Article  PubMed  Google Scholar 

  • Ciallella JR, Figueiredo H, Smith-Swintosky V, McGillis JP (1999) Thrombin induces surface and intracellular secretion of amyloid precursor protein from human endothelial cells. Thromb Haemost 81(4):630–637

    PubMed  CAS  Google Scholar 

  • Craft S, Watson GS (2004) Insulin and neurodegenerative disease: shared and specific mechanisms. Lancet Neurol 3(3):169–178

    Article  PubMed  CAS  Google Scholar 

  • Craft S, Baker LD, Montine TJ, Minoshima S, Arbuckle M, Claxton A, Watson GS et al (2011) Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol 69(1):29–38

    Article  PubMed  Google Scholar 

  • Curb JD, Rodriguez BL, Abbott RD, Petrovitch H, Foley D, Masaki KH, Ross GW et al (1999) Longitudinal association of vascular and Alzheimer’s dementias, diabetes, and glucose tolerance. Neurology 52(5):971–975

    Article  PubMed  CAS  Google Scholar 

  • de la Monte SM, Tong M, Lester-Coll N, Plater M Jr., Wands JR (2006) Therapeutic rescue of neurodegeneration in experimental type 3 diabetes: relevance to Alzheimer’s disease. J Alzheimers Dis 10(1):89–109

    PubMed  Google Scholar 

  • de la Monte SM (2012) Contributions of brain insulin resistance and deficiency in amyloid-related neurodegeneration in Alzheimer’s disease. Drugs 72(1):49–66

    Article  PubMed  Google Scholar 

  • Duarte JM, Agostinho PM, Carvalho RA, Cunha RA (2012) Caffeine consumption prevents diabetes-induced memory impairment and synaptotoxicity in the hippocampus of NONcZNO10/LTJ mice. PLoS One 7(4):e21899

    Article  PubMed  CAS  Google Scholar 

  • Etgen T, Sander D, Bickel H, Förstl H (2011) Mild cognitive impairment and dementia: the importance of modifiable risk factors. Dtsch Arztebl Int 108(44):743–750

    PubMed  Google Scholar 

  • Farris W, Mansourian S, Chang Y, Lindsley L, Eckman CB, Frosch MP, Eckman EA et al (2003) Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci U S A 100(7):4162–4167

    Article  PubMed  CAS  Google Scholar 

  • Gasparini L, Xu H (2003) Potential roles of insulin and IGF-1 in Alzheimer’s disease. Trends Neurosci 26(8):404–406

    Article  PubMed  CAS  Google Scholar 

  • Gold M, Alderton C, Zvartau-Hind M, Egginton S, Craft S, Irizarry M, Saunders AM et al (2010) Rosiglitazone monotherapy in mild-to-moderate Alzheimer’s disease: results from a randomized, double-blind, placebo-controlled phase III study. Dement Geriatr Cogn Disord 30(2):131–146

    Article  PubMed  CAS  Google Scholar 

  • Grammas P, Ovase R (2001) Inflammatory factors are elevated in brain microvessels in Alzheimer’s disease. Neurobiol Aging 22(6):837–842

    Article  PubMed  CAS  Google Scholar 

  • Grant WB (2009) Does vitamin D reduce the risk of dementia? J Alzheimers Dis 17(1):151–159

    PubMed  CAS  Google Scholar 

  • Gregg EW, Yaffe K, Cauley JA, Rolka DB, Blackwell TL, Narayan KM, Cummings SR (2000) Is diabetes associated with cognitive impairment and cognitive decline among older women? Study of Osteoporotic Fractures Research Group. Arch Intern Med 160(2):174–180

    Article  PubMed  CAS  Google Scholar 

  • Hanyu H, Sato T, Kiuchi A, Sakurai H, Iwamoto T (2009) Pioglitazone improved cognition in a pilot study on patients with Alzheimer’s disease and mild cognitive impairment with diabetes mellitus. J Am Geriatr Soc 57(1):177–179

    Article  PubMed  Google Scholar 

  • Hofman A, Ott A, Breteler MM, Bots ML, van Duijn CN, van Harskamp F, Slooter AJ et al (1997) „Atherosclerosis, apolipoprotein E, and prevalence of dementia and Alzheimer’s disease in the Rotterdam Study. Lancet 349(9046):151–154

    Article  PubMed  CAS  Google Scholar 

  • Hoyer S (2004) Glucose metabolism and insulin receptor signal transduction in Alzheimer disease. Eur J Pharmacol 490:115–125

    Article  PubMed  CAS  Google Scholar 

  • Irie F, Fitzpatrick AL, Lopez OL, Kuller LH, Peila R, Newman AB, Launer LJ (2008) Enhanced risk for Alzheimer disease in persons with type 2 diabetes and APOE epsilon4: the Cardiovascular Health Study Cognition Study. Arch Neurol 65(1):89–93

    Article  PubMed  Google Scholar 

  • Johnson GV, Cox TM, Lockhart JP, Zinnerman MD, Miller ML, Powers RE (1997) Transglutaminase activity is increased in Alzheimer’s disease brain. Brain Res 751(2):323–329

    Article  PubMed  CAS  Google Scholar 

  • Kalaria RN, Cohen DL, Premkumar DR, Nag S, LaManna JC, Lust WD (1998) Vascular endothelial growth factor in Alzheimer’s disease and experimental cerebral ischemia. Brain Res Mol Brain Res 62(1):101–105

    Article  PubMed  CAS  Google Scholar 

  • Kivipelto M, Helkala EL, Laakso MP, Hanninen T, Hallikainen M, Alhainen K, Iivonen S et al (2002) Apolipoprotein E epsilon4 allele, elevated midlife total cholesterol level, and high midlife systolic blood pressure are independent risk factors for late-life Alzheimer disease. Ann Intern Med 137(3):149–155

    Article  PubMed  CAS  Google Scholar 

  • Kivipelto M, Ngandu T, Fratiglioni L, Viitanen M, Helkala EL, Winblad B, Kareholt I et al (2005) Obesity and vascular risk factors at midlife and the risk of dementia and Alzheimer disease. Arch Neurol 62(10):1556–1560

    Article  PubMed  Google Scholar 

  • Knowler WC, Fowler SE, Hamman RF, Christophi CA, Hoffman HJ, Brenneman AT, Brown-Friday JO et al (2009) 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet 374(9702):1677–1686

    Article  PubMed  Google Scholar 

  • Launer LJ, Ross GW, Petrovitch H, Masaki K, Foley D, White LR, Havlik RJ (2000) Midlife blood pressure and dementia: the Honolulu-Asia aging study. Neurobiol Aging 21(1):49–55

    Article  PubMed  CAS  Google Scholar 

  • Lautenschlager NT, Cox KL, Flicker L, Foster JK, van Bockxmeer FM, Xiao J, Greenop KR, Almeida OP (2008) Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial. Jama 300(9):1027–1037

    Article  PubMed  CAS  Google Scholar 

  • Ledesma MD, Bonay P, Colaco C, Avila J (1994) Analysis of microtubule-associated protein tau glycation in paired helical filaments. J Biol Chem 269(34):21614–21619

    PubMed  CAS  Google Scholar 

  • Leibson CL, Rocca WA, Hanson VA, Cha R, Kokmen E, O’Brien PC, Palumbo PJ (1997) Risk of dementia among persons with diabetes mellitus: a population-based cohort study. Am J Epidemiol 145(4):301–308

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Iqbal K, Grundke-Iqbal I, Hart GW, Gong CX (2004) O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer’s disease. Proc Natl Acad Sci U S A 101(29):10804–10809

    Article  PubMed  CAS  Google Scholar 

  • Logroscino G, Kang JH, Grodstein F (2004) Prospective study of type 2 diabetes and cognitive decline in women aged 70–81 years. BMJ 328(7439):548

    Article  PubMed  Google Scholar 

  • Lu FP, Lin KP, Kuo HK (2009) Diabetes and the risk of multi-system aging phenotypes: a systematic review and meta-analysis. PLoS One 4(1):e4144

    Article  PubMed  Google Scholar 

  • Luchsinger JA, Reitz C, Honig LS, Tang MX, Shea S, Mayeux R (2005) Aggregation of vascular risk factors and risk of incident Alzheimer disease. Neurology 65(4):545–551

    Article  PubMed  CAS  Google Scholar 

  • Luchsinger JA, Reitz C, Patel B, Tang MX, Manly JJ, Mayeux R (2007) Relation of diabetes to mild cognitive impairment. Arch Neurol 64(4):570–575

    Article  PubMed  Google Scholar 

  • Luchsinger JA (2010) Diabetes, related conditions, and dementia. J Neurol Sci 1–2(299):35–38

    Article  Google Scholar 

  • Luitse MJ, Biessels GJ, Rutten GE, Kappelle LJ (2012) Diabetes, hyperglycaemia, and acute ischaemic stroke. Lancet Neurol 11(3):261–271

    Article  PubMed  Google Scholar 

  • Messier C, Teutenberg K (2005) The role of insulin, insulin growth factor, and insulin-degrading enzyme in brain aging and Alzheimer’s disease. Neural Plast 12(4):311–328

    Article  PubMed  CAS  Google Scholar 

  • Moreira PI, Santos MS, Seica R, Oliveira CR (2007) Brain mitochondrial dysfunction as a link between Alzheimer’s disease and diabetes. J Neurol Sci 257(1–2):206–214

    Article  PubMed  CAS  Google Scholar 

  • Murray FE, Landsberg JP, Williams RJ, Esiri MM, Watt F (1992) Elemental analysis of neurofibrillary tangles in Alzheimer’s disease using proton-induced X-ray analysis. Ciba Found Symp 169:201–210 (discussion 210–206)

    PubMed  CAS  Google Scholar 

  • National Institute of Aging/National Institutes of Health. (http://www.nia.nih.gov)

    Google Scholar 

  • Nash DT, Fillit H (2006) Cardiovascular disease risk factors and cognitive impairment. Am J Cardiol 97(8):1262–1265

    Article  PubMed  Google Scholar 

  • O’Brien RJ (2011) Vascular dementia: atherosclerosis, cognition and Alzheimer’s disease. Curr Alzheimer Res 8(4):341–344

    Article  Google Scholar 

  • Okereke OI, Kang JH, Cook NR, Gaziano JM, Manson JE, Buring JE, Grodstein F (2008) Type 2 diabetes mellitus and cognitive decline in two large cohorts of community-dwelling older adults. J Am Geriatr Soc 56(6):1028–1036

    Article  PubMed  Google Scholar 

  • Ott A, Stolk RP, van Harskamp F, Pols HA, Hofman A, Breteler MM (1999) Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology 53(9):1937–1942

    Article  PubMed  CAS  Google Scholar 

  • Pasi M, Poggesi A, Salvadori E, Pantoni L (2012) Post-stroke dementia and cognitive impairment. Front Neurol Neurosci 30:65–69

    Article  PubMed  Google Scholar 

  • Peila R, Rodriguez BL, Launer LJ (2002) Type 2 diabetes, APOE gene, and the risk for dementia and related pathologies: The Honolulu-Asia Aging Study. Diabetes 51(4):1256–1262

    Article  PubMed  CAS  Google Scholar 

  • Petrova M, Prokopenko S, Pronina E, Mozheyko E (2010) Diabetes type 2, hypertension and cognitive dysfunction in middle age women. J Neurol Sci 1–2(299):39–41

    Article  Google Scholar 

  • Pratico D, Sung S (2004) Lipid peroxidation and oxidative imbalance: early functional events in Alzheimer’s disease. J Alzheimers Dis 6(2):171–175

    PubMed  CAS  Google Scholar 

  • Querfurth HW, Selkoe DJ (1994) Calcium ionophore increases amyloid beta peptide production by cultured cells. Biochemistry 33(15):4550–4561

    Article  PubMed  CAS  Google Scholar 

  • Reddy PH, Beal MF (2008) Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer’s disease. Trends Mol Med 14(2):45–53

    Article  PubMed  CAS  Google Scholar 

  • Reger MA, Watson GS, Green PS, Baker LD, Plymate SR, Fishel MA, Cholerton B et al (2008) Intranasal insulin administration dose-dependently modulates verbal memory and plasma amyloid-beta in memory-impaired older adults. J Alzheimers Dis 13(3):323–331

    PubMed  CAS  Google Scholar 

  • Resende R, Moreira PI, Proenca T, Deshpande A, Busciglio J, Pereira C, Oliveira CR (2008) Brain oxidative stress in a triple-transgenic mouse model of Alzheimer disease. Free Radic Biol Med 44(12):2051–2057

    Article  PubMed  CAS  Google Scholar 

  • Risner ME, Saunders AM, Altman JF, Ormandy GC, Zvartau-Hind ME, Foley IM, Craft S et al (2006) Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer’s disease. Pharmacogenomics J 6(4):246–254

    PubMed  CAS  Google Scholar 

  • Rodriguez-Rivera J, Denner L, Dineley KT (2011) Rosiglitazone reversal of Tg2576 cognitive deficits is independent of peripheral gluco-regulatory status. Behav Brain Res 216(1):255–261

    Article  PubMed  CAS  Google Scholar 

  • Russell JW, Berent-Spillson A, Vincent AM, Freimann CL, Sullivan KA, Feldman EL (2008) Oxidative injury and neuropathy in diabetes and impaired glucose tolerance. Neurobiol Dis 30(3):420–429

    Article  PubMed  CAS  Google Scholar 

  • Sato T, Hanyu H, Hirao K, Kanetaka H, Sakurai H, Iwamoto T (2009) Efficacy of PPAR-gamma agonist pioglitazone in mild Alzheimer disease. Neurobiol Aging 32(9):1626–1633

    Article  PubMed  Google Scholar 

  • Schnaider-Beeri M, Goldbourt U, Silverman JM, Noy S, Schmeidler J, Ravona-Springer R, Sverdlick A, Davidson M (2004) Diabetes mellitus in midlife and the risk of dementia three decades later. Neurology 63(10):1902–1907

    Article  PubMed  CAS  Google Scholar 

  • Siedlak SL, Cras P, Kawai M, Richey P, Perry G (1991) Basic fibroblast growth factor binding is a marker for extracellular neurofibrillary tangles in Alzheimer disease. J Histochem Cytochem 39(7):899–904

    Article  PubMed  CAS  Google Scholar 

  • Sonnen JA, Larson EB, Brickell K, Crane PK, Woltjer R, Montine TJ, Craft S (2009) Different patterns of cerebral injury in dementia with or without diabetes. Arch Neurol 66(3):315–322

    Article  PubMed  Google Scholar 

  • Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, Xu XJ et al (2005) Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease – is this type 3 diabetes? J Alzheimers Dis 7(1):63–80

    PubMed  CAS  Google Scholar 

  • Strachan MW, Reynolds RM, Marioni RE, Price JF (2011) Cognitive function, dementia and type 2 diabetes mellitus in the elderly. Nat Rev Endocrinol 7(2):108–114

    Article  PubMed  CAS  Google Scholar 

  • Taguchi A (2009) Vascular factors in diabetes and Alzheimer’s disease. J Alzheimers Dis 16(4):859–864

    PubMed  Google Scholar 

  • Toro P, Schönknecht P, Schröder J (2009) Type II diabetes in mild cognitive impairment and Alzheimer’s disease: results from a prospective population-based study in Germany. J Alzheimers Dis 16(4):687–691

    PubMed  Google Scholar 

  • Tsopanoglou NE, Maragoudakis ME (1999) On the mechanism of thrombin-induced angiogenesis. Potentiation of vascular endothelial growth factor activity on endothelial cells by up-regulation of its receptors. J Biol Chem 274(34):23969–23976

    Article  PubMed  CAS  Google Scholar 

  • Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, Ilanne-Parikka P, Keinanen-Kiukaanniemi S (2001) Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 344(18):1343–1350

    Article  PubMed  CAS  Google Scholar 

  • Vagnucci AH Jr., Li WW (2003) Alzheimer’s disease and angiogenesis. Lancet 361(9357):605–608

    Article  PubMed  CAS  Google Scholar 

  • Valente T, Gella A, Fernandez-Busquets X, Unzeta M, Durany N (2010) Immunohistochemical analysis of human brain suggests pathological synergism of Alzheimer’s disease and diabetes mellitus. Neurobiol Dis 37(1):67–76

    Article  PubMed  CAS  Google Scholar 

  • Velayudhan L, Poppe M, Archer N, Proitsi P, Brown RG, Lovestone S (2010) Risk of developing dementia in people with diabetes and mild cognitive impairment. Br J Psychiatry 196(1):36–40

    Article  PubMed  Google Scholar 

  • Viswanathan A, Rocca WA, Tzourio C (2009) Vascular risk factors and dementia: how to move forward? Neurology 72(4):368–374

    Article  PubMed  Google Scholar 

  • Watson GS, Bernhardt T, Reger MA, Cholerton BA, Asthana SS, Peskind ER, Baker LD et al (2006) Insulin effects on CSF norepinephrine and cognition in Alzheimer’s disease. Neurobiol Aging 27(1):38–41

    Article  PubMed  CAS  Google Scholar 

  • Whitmer RA, Sidney S, Selby J, Johnston SC, Yaffe K (2005) Midlife cardiovascular risk factors and risk of dementia in late life. Neurology 64(2):277–281

    Article  PubMed  CAS  Google Scholar 

  • Whitmer RA, Karter AJ, Yaffe K, Quesenberry CP Jr., Selby JV (2009) Hypoglycemic episodes and risk of dementia in older patients with type 2 diabetes mellitus. Jama 301(15):1565–1572

    Article  PubMed  CAS  Google Scholar 

  • Wolf SA, Kronenberg G, Lehmann K, Blankenship A, Overall R, Staufenbiel M, Kempermann G (2006) Cognitive and physical activity differently modulate disease progression in the amyloid precursor protein (APP)-23 model of Alzheimer’s disease. Biol Psychiatry 60(12):1314–1323

    Article  PubMed  CAS  Google Scholar 

  • Xie L, Helmerhorst E, Taddei K, Plewright B, Van Bronswijk W, Martins R (2002) Alzheimer’s beta-amyloid peptides compete for insulin binding to the insulin receptor. J Neurosci 22(10):RC221

    PubMed  Google Scholar 

  • Xu W, Qiu C, Winblad B, Fratiglioni L (2007) The effect of borderline diabetes on the risk of dementia and Alzheimer’s disease. Diabetes 56(1):211–216

    Article  PubMed  CAS  Google Scholar 

  • Xu WL, Qiu CX, Wahlin A, Winblad B, Fratiglioni L (2004) Diabetes mellitus and risk of dementia in the Kungsholmen project: a 6-year follow-up study. Neurology 63(7):1181–1186

    Article  PubMed  CAS  Google Scholar 

  • Xu WL, Qiu C, Gatz M, Pedersen NL, Johansson B, Fratiglioni L (2009) Mid- and late-life diabetes in relation to the risk of dementia: a population-based twin study. Diabetes 58(1):71–77

    Article  PubMed  CAS  Google Scholar 

  • Xu WL, von Strauss E, Qiu CX, Winblad B, Fratiglioni L (2009) Uncontrolled diabetes increases the risk of Alzheimer’s disease: a population-based cohort study. Diabetologia 52(6):1031–1039

    Article  PubMed  CAS  Google Scholar 

  • Yaffe K, Blackwell T, Kanaya AM, Davidowitz N, Barrett-Connor E, Krueger K (2004) Diabetes, impaired fasting glucose, and development of cognitive impairment in older women. Neurology 63(4):658–663

    Article  PubMed  CAS  Google Scholar 

  • Yaffe K, Fiocco AJ, Lindquist K, Vittinghoff E, Satterfield S, Newman AB, Simonsick EM et al (2009) Predictors of maintaining cognitive function in older adults: the Health ABC study. Neurology 72(23):2029–2035

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Dellsperger KC, Zhang C (2012) The link between metabolic abnormalities and endothelial dysfunction in type 2 diabetes: an update. Basic Res Cardiol 107(1):237

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fatke, B., Förstl, H. (2013). Demenz und Diabetes mellitus. In: Petrak, F., Herpertz, S. (eds) Psychodiabetologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29908-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29908-7_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29907-0

  • Online ISBN: 978-3-642-29908-7

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics