Skip to main content

Understanding the Semantic Structure of Human fMRI Brain Recordings with Formal Concept Analysis

  • Conference paper
Formal Concept Analysis (ICFCA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7278))

Included in the following conference series:

Abstract

We investigate whether semantic information related to object categories can be obtained from human fMRI BOLD responses with Formal Concept Analysis (FCA). While the BOLD response provides only an indirect measure of neural activity on a relatively coarse spatio-temporal scale, it has the advantage that it can be recorded from humans, who can be questioned about their perceptions during the experiment, thereby obviating the need of interpreting animal behavioral responses. Furthermore, the BOLD signal can be recorded from the whole brain simultaneously. In our experiment, a single human subject was scanned while viewing 72 gray-scale pictures of animate and inanimate objects in a target detection task. These pictures comprise the formal objects for FCA. We computed formal attributes by learning a hierarchical Bayesian classifier, which maps BOLD responses onto binary features, and these features onto object labels. The connectivity matrix between the binary features and the object labels can then serve as the formal context. In line with previous reports, FCA revealed a clear dissociation between animate and inanimate objects with the inanimate category also including plants. Furthermore, we found that the inanimate category was subdivided between plants and non-plants when we increased the number of attributes extracted from the BOLD response. FCA also allows for the display of organizational differences between high-level and low-level visual processing areas. We show that subjective familiarity and similarity ratings are strongly correlated with the attribute structure computed from the BOLD signal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bell, A.H., Hadj-Bouziane, F., Frihauf, J.B., Tootell, R.B.H., Ungerleider, L.G.: Object representations in the temporal cortex of monkeys and humans as revealed by functional magnetic resonance imaging. Journal of Neurophysiology 101(2), 688–700 (2009), http://jn.physiology.org/content/101/2/688.abstract

    Article  Google Scholar 

  2. Bell, A.H., Malecek, N.J., Morin, E.L., Hadj-Bouziane, F., Tootell, R.B.H., Ungerleider, L.G.: Relationship between functional magnetic resonance imaging-identified regions and neuronal category selectivity. The Journal of Neuroscience 31(34), 12229–12240 (2011), http://www.jneurosci.org/content/31/34/12229.abstract

    Article  Google Scholar 

  3. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)

    Google Scholar 

  4. Brett, M., Anton, J., Valabregue, R., Poline, J.: Region of interest analysis using an SPM toolbox. Neuroimage 16(2) (2002); 8th International Conference on Functional Mapping of the Human Brain

    Google Scholar 

  5. Eger, E., Ashburner, J., Haynes, J.D., Dolan, R.J., Rees, G.: fMRI activity patterns in human LOC carry information about object exemplars within category. J. Cogn. Neurosci. 20(2), 356–370 (2008)

    Article  Google Scholar 

  6. Endres, D., Földiák, P., Priss, U.: An application of formal concept analysis to semantic neural decoding. Annals of Mathematics and Artificial Intelligence 57(3-4), 233–248 (2010), doi:10.1007/s10472-010-9196-8

    Article  Google Scholar 

  7. Evans, A.C., Marrett, S., Neelin, P., Collins, L., Worsley, K., Dai, W., Milot, S., Meyer, E., Bub, D.: Anatomical mapping of functional activation in stereotactic coordinate space. Neuroimage 1(1), 43–53 (1992)

    Article  Google Scholar 

  8. Földiák, P.: Sparse coding in the primate cortex. In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks, 2nd edn. MIT Press, Cambridge (2002)

    Google Scholar 

  9. Friston, K.J., Holmes, A.P., Price, C.J., Buchel, C., Worsley, K.J.: Multisubject fMRI studies and conjunction analyses. Neuroimage 10(4), 385–396 (1999)

    Article  Google Scholar 

  10. Friston, K., Holmes, A., Worsley, K., Poline, J., Frith, C., Frackowiak, R.: Statistical parametric mapping: a general linear approach. Hum. Brain Mapping 2, 189–210 (1995)

    Article  Google Scholar 

  11. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical foundations. Springer (1999)

    Google Scholar 

  12. Harpur, G.F., Prager, R.W.: Experiments with low-entropy neural networks. In: Baddeley, R., Hancock, P., Földiák, P. (eds.) Information Theory and the Brain, ch. 5, pp. 84–100. Cambridge University Press, New York (2000)

    Chapter  Google Scholar 

  13. Haxby, J., Gobbini, M., Furey, M., Ishai, A., Schouten, J., Pietrini, P.: Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 5539(293), 2425–2430 (2001)

    Article  Google Scholar 

  14. Josephs, O., Turner, R., Friston, K.J.: Event-related fMRI. Human Brain Mapping 5, 243–248 (1997)

    Article  Google Scholar 

  15. Kandel, E.R., Schwartz, J.H., Jessell, T.M. (eds.): Principles of Neural Science, ch. 25-29. McGraw-Hill Education (2000)

    Google Scholar 

  16. Kiani, R., Esteky, H., Mirpour, K., Tanaka, K.: Object category structure in response patterns of neuronal population in monkey inferior temporal cortex. Journal of Neurophysiology 97(6), 4296–4309 (2007)

    Article  Google Scholar 

  17. Knebel, J.F., Toepel, U., Hudry, J., le Coutre, J., Murray, M.M.: Generating controlled image sets in cognitive neuroscience research. Brain Topogr. 20(4), 284–289 (2008)

    Article  Google Scholar 

  18. Kriegeskorte, N., Mur, M., Ruff, D.A., Kiani, R., Bodurka, J., Esteky, H., Tanaka, K., Bandettini, P.A.: Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron 60(6), 1126–1141 (2008)

    Article  Google Scholar 

  19. Lengnink, K.: Formalisierungen von Ähnlichkeit aus Sicht der Formalen Begriffsanalyse. Ph.D. thesis, Technische Hochschule Darmstadt, Fachbereich Mathematik (1996)

    Google Scholar 

  20. Lin, C.J.: Projected gradient methods for non-negative matrix factorization. Neural Computation 19, 2756–2779 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mishkin, M., Ungerleider, L.G., Macko, K.A.: Object vision and spatial vision: two cortical pathways. Trends in Neurosciences 6, 414–417 (1983), http://www.sciencedirect.com/science/article/pii/016622368390190X

    Article  Google Scholar 

  22. Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583), 607–609 (1996)

    Article  Google Scholar 

  23. Op de Beeck, H.P., Haushofer, J., Kanwisher, N.G.: Interpreting fMRI data: maps, modules and dimensions. Nat. Rev. Neurosci. 9(2), 123–135 (2008)

    Article  Google Scholar 

  24. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes in C++: the art of scientific computing, 3rd edn. Cambridge University Press, New York (2007)

    Google Scholar 

  25. Tversky, A.: Features of similarity. Psychological Review 84(4), 327–352 (1977)

    Article  Google Scholar 

  26. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., Joliot, M.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the mni MRI single-subject brain. Neuroimage 15(1), 273–289 (2002)

    Article  Google Scholar 

  27. Uludag, K., Dubowitz, D., Buxton, R.: Basic principals of functional MRI, pp. 249–287. Elsevier (2005)

    Google Scholar 

  28. Walther, D.B., Caddigan, E., Fei-Fei, L., Beck, D.M.: Natural scene categories revealed in distributed patterns of activity in the human brain. J. Neurosci. 29(34), 10573–10581 (2009)

    Article  Google Scholar 

  29. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordrecht (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Endres, D., Adam, R., Giese, M.A., Noppeney, U. (2012). Understanding the Semantic Structure of Human fMRI Brain Recordings with Formal Concept Analysis. In: Domenach, F., Ignatov, D.I., Poelmans, J. (eds) Formal Concept Analysis. ICFCA 2012. Lecture Notes in Computer Science(), vol 7278. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29892-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29892-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29891-2

  • Online ISBN: 978-3-642-29892-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics