Skip to main content

Homogeneous Transformations and Joint Coordinates in the Description of Geometry of Multibody Systems

  • Chapter
  • 2146 Accesses

Part of the book series: Ocean Engineering & Oceanography ((OEO,volume 1))

Abstract

Basic models of bodies used in dynamic analysis of mechanical systems, including multibody systems, are a material point and a rigid body. They have, respectively, three and six degrees of freedom. To describe their positions either three or six independent coordinates must therefore be given. Usually, the position is given in a rectangular clockwise Cartesian system. It is then convenient to express the position of a point as a vector, also called a radius vector. To describe a body’s position, an additional coordinate system is attached to it in a fixed way. The position of this coordinate system, thus also of the body, is defined by giving the position vector of a selected point of the body (usually coinciding with the origin of the coordinate system attached to the body) and additionally a 3×3 matrix called a rotation matrix. In classical mechanics, displacement of a body from one position to another is treated as a superposition of two motions: translation and rotation. As a consequence, if a position vector of a point in the movable coordinate system attached to the body is given, and a position vector of this point in the reference system is to be determined, two mathematical operations are necessary: multiplication of the rotation matrices and addition of two vectors. By introducing the method of homogeneous transformations, the notation can be simplified. Such transformations are described by 4×4 matrices and take into account both a translation of a coordinate system and its rotation. The convenience of such interpretation makes it highly popular in robotics [Craig J. J., 1988], [Morecki A., et al., 2002], [Spong M. W., et al., 2006], [Jezierski E., 2006], which is a domain where multibody systems commonly occur.

In the classical approach, the positions of links are expressed in a global static coordinate system. To describe a system with n links, 6×n parameters have to be specified. These are called absolute coordinates. The use of joint coordinates which define motions of links relative to their predecessors in a kinematic chain enable a description of the positions of the system’s consecutive links with far less parameters.

The current chapter offers a basic introduction to describing positions and orientations of coordinate systems, transformations of vectors and joint coordinates. Application of homogeneous transformations and joint coordinates to describe the geometry of multibody systems is also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edmund Wittbrodt .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Wittbrodt, E., Szczotka, M., Maczyński, A., Wojciech, S. (2013). Homogeneous Transformations and Joint Coordinates in the Description of Geometry of Multibody Systems. In: Rigid Finite Element Method in Analysis of Dynamics of Offshore Structures. Ocean Engineering & Oceanography, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29886-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29886-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29885-1

  • Online ISBN: 978-3-642-29886-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics