Skip to main content

Part of the book series: Grundlehren der mathematischen Wissenschaften ((GL,volume 345))

  • 2505 Accesses

Abstract

In this chapter, we prove a central limit theorem for the position of a tagged particle in exclusion processes. This problem is a special case of a random walk in a random environment. We adopt the approach of the environment as seen from the particle introduced in Sect. 1.3. It is first shown that this position can be written as the sum of a martingale and an additive functional of the exclusion process as seen from the particle. The techniques developed in the first part of the book applied to the present context permit to show that the additive functional can be itself expressed as the sum of a martingale and a remainder which vanishes asymptotically. This observation reduces the proof of the central limit theorem for the tagged particle to a central limit theorem for martingales which has been presented in the first part of the book. A variational formula for the asymptotic variance as well as bounds are given in the last section of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander FJ, Lebowitz JL (1990) Driven diffusive systems with a moving obstacle: a variation on the Brazil nuts problem. J Phys A, Math Gen 23:L375–L381

    Article  MathSciNet  Google Scholar 

  • Alexander FJ, Lebowitz JL (1994) On the drift and diffusion of a rod in a lattice fluid. J Phys A, Math Gen 27:683–696

    Article  MathSciNet  MATH  Google Scholar 

  • Arratia R (1983) The motion of a tagged particle in the simple symmetric exclusion system on Z. Ann Probab 11(2):362–373

    Article  MathSciNet  MATH  Google Scholar 

  • Bertini L, Toninelli C (2004) Exclusion processes with degenerate rates: convergence to equilibrium and tagged particle. J Stat Phys 117(3–4):549–580

    Article  MathSciNet  MATH  Google Scholar 

  • Blumenthal RM, Getoor RK (1968) Markov processes and potential theory. Pure and applied mathematics, vol 29. Academic Press, New York

    MATH  Google Scholar 

  • Brox T, Rost H (1984) Equilibrium fluctuations of stochastic particle systems: the role of conserved quantities. Ann Probab 12(3):742–759

    Article  MathSciNet  MATH  Google Scholar 

  • Caputo P, Ioffe D (2003) Finite volume approximation of the effective diffusion matrix: the case of independent bond disorder. Ann Inst Henri Poincaré Probab Stat 39(3):505–525

    Article  MathSciNet  MATH  Google Scholar 

  • Carlson JM, Grannan ER, Swindle GH (1993a) A limit theorem for tagged particles in a class of self-organizing particle systems. Stoch Process Appl 47(1):1–16

    Article  MathSciNet  MATH  Google Scholar 

  • Carlson JM, Grannan ER, Swindle GH, Tour J (1993b) Singular diffusion limits of a class of reversible self-organizing particle systems. Ann Probab 21(3):1372–1393

    Article  MathSciNet  MATH  Google Scholar 

  • Feller W (1971) An introduction to probability theory and its applications, vol II, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Gonçalves P, Jara M (2008) Scaling limits of a tagged particle in the exclusion process with variable diffusion coefficient. J Stat Phys 132(6):1135–1143

    Article  MathSciNet  MATH  Google Scholar 

  • Jara M (2006) Finite-dimensional approximation for the diffusion coefficient in the simple exclusion process. Ann Probab 34(6):2365–2381

    Article  MathSciNet  MATH  Google Scholar 

  • Jara M (2009) Nonequilibrium scaling limit for a tagged particle in the simple exclusion process with long jumps. Commun Pure Appl Math 62(2):198–214

    Article  MathSciNet  MATH  Google Scholar 

  • Jara MD, Landim C (2006) Nonequilibrium central limit theorem for a tagged particle in symmetric simple exclusion. Ann Inst Henri Poincaré Probab Stat 42(5):567–577

    Article  MathSciNet  MATH  Google Scholar 

  • Jara MD, Landim C (2008) Quenched non-equilibrium central limit theorem for a tagged particle in the exclusion process with bond disorder. Ann Inst Henri Poincaré Probab Stat 44(2):341–361

    Article  MathSciNet  MATH  Google Scholar 

  • Kipnis C (1986) Central limit theorems for infinite series of queues and applications to simple exclusion. Ann Probab 14(2):397–408

    Article  MathSciNet  MATH  Google Scholar 

  • Kipnis C, Varadhan SRS (1986) Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Commun Math Phys 104(1):1–19

    Article  MathSciNet  MATH  Google Scholar 

  • Landim C, Olla S, Volchan SB (1998a) Driven tracer particle in one-dimensional symmetric simple exclusion. Commun Math Phys 192(2):287–307

    Article  MathSciNet  MATH  Google Scholar 

  • Landim C, Olla S, Varadhan SRS (2001) Symmetric simple exclusion process: regularity of the self-diffusion coefficient. Commun Math Phys 224(1):307–321. Dedicated to Joel L Lebowitz

    Article  MathSciNet  MATH  Google Scholar 

  • Landim C, Olla S, Varadhan SRS (2002) Finite-dimensional approximation of the self-diffusion coefficient for the exclusion process. Ann Probab 30(2):483–508

    Article  MathSciNet  MATH  Google Scholar 

  • Lebowitz JL, Rost H (1994) The Einstein relation for the displacement of a test particle in a random environment. Stoch Process Appl 54(2):183–196

    Article  MathSciNet  MATH  Google Scholar 

  • Liggett TM (1985) Interacting particle systems. Grundlehren der Mathematischen Wissenschaften [Fundamental principles of mathematical sciences], vol 276. Springer, New York

    Book  MATH  Google Scholar 

  • Loulakis M (2002) Einstein relation for a tagged particle in simple exclusion processes. Commun Math Phys 229(2):347–367

    Article  MathSciNet  MATH  Google Scholar 

  • Loulakis M (2005) Mobility and Einstein relation for a tagged particle in asymmetric mean zero random walk with simple exclusion. Ann Inst Henri Poincaré Probab Stat 41(2):237–254

    Article  MathSciNet  MATH  Google Scholar 

  • Osada H (1998a) An invariance principle for Markov processes and Brownian particles with singular interaction. Ann Inst Henri Poincaré Probab Stat 34(2):217–248

    Article  MathSciNet  MATH  Google Scholar 

  • Osada H (1998b) Positivity of the self-diffusion matrix of interacting Brownian particles with hard core. Probab Theory Relat Fields 112(1):53–90

    Article  MathSciNet  MATH  Google Scholar 

  • Owhadi H (2003) Approximation of the effective conductivity of ergodic media by periodization. Probab Theory Relat Fields 125(2):225–258

    Article  MathSciNet  MATH  Google Scholar 

  • Peligrad M, Sethuraman S (2008) On fractional Brownian motion limits in one dimensional nearest-neighbor symmetric simple exclusion. ALEA Lat Am J Probab Math Stat 4:245–255

    MathSciNet  MATH  Google Scholar 

  • Rost H, Vares ME (1985) Hydrodynamics of a one-dimensional nearest neighbor model. In: Particle systems, random media and large deviations, Brunswick, Maine, 1984. Contemp math, vol 41. Am Math Soc, Providence, pp 329–342

    Chapter  Google Scholar 

  • Saada E (1987) A limit theorem for the position of a tagged particle in a simple exclusion process. Ann Probab 15(1):375–381

    Article  MathSciNet  MATH  Google Scholar 

  • Sethuraman S (2007) On diffusivity of a tagged particle in asymmetric zero-range dynamics. Ann Inst Henri Poincaré Probab Stat 43(2):215–232

    Article  MathSciNet  MATH  Google Scholar 

  • Sethuraman S, Varadhan SRS, Yau HT (2000) Diffusive limit of a tagged particle in asymmetric simple exclusion processes. Commun Pure Appl Math 53(8):972–1006

    Article  MathSciNet  MATH  Google Scholar 

  • Shiga T (1988) Tagged particle motion in a clustered random walk system. Stoch Process Appl 30(2):225–252

    Article  MathSciNet  MATH  Google Scholar 

  • Spitzer F (1970) Interaction of Markov processes. Adv Math 5:246–290

    Article  MathSciNet  MATH  Google Scholar 

  • Szász D, Tóth B (1987a) A dynamical theory of Brownian motion for the Rayleigh gas. In: Proceedings of the symposium on statistical mechanics of phase transitions—mathematical and physical aspects, Trebon, 1986, vol 47, pp 681–693

    Google Scholar 

  • Szász D, Tóth B (1987b) Towards a unified dynamical theory of the Brownian particle in an ideal gas. Commun Math Phys 111(1):41–62

    Article  MATH  Google Scholar 

  • Tanemura H (1989) Ergodicity for an infinite particle system in R d of jump type with hard core interaction. J Math Soc Jpn 41(4):681–697

    Article  MathSciNet  MATH  Google Scholar 

  • Toninelli C, Biroli G (2004) Dynamical arrest, tracer diffusion and kinetically constrained lattice gases. J Stat Phys 117(1–2):27–54

    Article  MathSciNet  MATH  Google Scholar 

  • Varadhan SRS (1995) Self-diffusion of a tagged particle in equilibrium for asymmetric mean zero random walk with simple exclusion. Ann Inst Henri Poincaré Probab Stat 31(1):273–285

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Komorowski, T., Landim, C., Olla, S. (2012). Self-diffusion. In: Fluctuations in Markov Processes. Grundlehren der mathematischen Wissenschaften, vol 345. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29880-6_6

Download citation

Publish with us

Policies and ethics