Skip to main content

Part of the book series: Grundlehren der mathematischen Wissenschaften ((GL,volume 345))

  • 2597 Accesses

Abstract

We extend the ideas introduced in Chap. 1 to continuous time Markov processes on general state spaces with a stationary ergodic measure allowed to be non-reversible. We first prove a central limit theorem for continuous time ergodic martingales. Then we prove the central limit theorem for functions V such that certain convergence properties of the corresponding resolvent (λL)−1 V are satisfied, where L is the generator of the process. We move from reversible processes, where, like in Chap. 1, finiteness of the limit variance imply these convergence conditions, to processes satisfying a sector condition or more generally a graded sector condition. This last condition will be motivated later in Parts II and III by important examples (exclusion processes and diffusions in Gaussian random fields). Normal generators are other examples, that turn out to be important later on for the diffusions in time dependent environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Blumenthal RM, Getoor RK (1968) Markov processes and potential theory. Pure and applied mathematics, vol 29. Academic Press, New York

    MATH  Google Scholar 

  • Bolthausen E (1980) The Berry-Esseen theorem for functionals of discrete Markov chains. Z Wahrscheinlichkeitstheor Verw Geb 54(1):59–73

    Article  MathSciNet  MATH  Google Scholar 

  • Bolthausen E (1982) The Berry-Esseén theorem for strongly mixing Harris recurrent Markov chains. Z Wahrscheinlichkeitstheor Verw Geb 60(3):283–289

    Article  MathSciNet  MATH  Google Scholar 

  • Chatterjee S, Diaconis P, Meckes E (2005) Exchangeable pairs and Poisson approximation. Probab Surv 2:64–106 (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  • Cheeger J (1970) A lower bound for the smallest eigenvalue of the Laplacian. In: Problems in analysis (Papers dedicated to Salomon Bochner, 1969). Princeton University Press, Princeton, pp 195–199

    Google Scholar 

  • Chung KL, Walsh JB (2005) Markov processes, Brownian motion, and time symmetry. Grundlehren der Mathematischen Wissenschaften [Fundamental principles of mathematical sciences], vol 249, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • De Masi A, Ferrari PA, Goldstein S, Wick WD (1989) An invariance principle for reversible Markov processes. Applications to random motions in random environments. J Stat Phys 55(3–4):787–855

    Article  MATH  Google Scholar 

  • Derriennic Y, Lin M (1996) Sur le théorème limite central de Kipnis et Varadhan pour les chaînes réversibles ou normales. C R Acad Sci Paris Sér I Math 323(9):1053–1057

    MathSciNet  MATH  Google Scholar 

  • Derriennic Y, Lin M (2001a) The central limit theorem for Markov chains with normal transition operators, started at a point. Probab Theory Relat Fields 119(4):508–528

    Article  MathSciNet  MATH  Google Scholar 

  • Diaconis P, Holmes S (eds) (2004) Stein’s method: expository lectures and applications. IMS lect notes monogr ser, vol 46. Inst Math Stat, Beachwood. Papers from the workshop on Stein’s method held at Stanford University, Stanford, CA, 1998

    MATH  Google Scholar 

  • Ethier SN, Kurtz TG (1986) Markov processes: characterization and convergence. Wiley series in probability and mathematical statistics: probability and mathematical statistics. Wiley, New York

    Book  MATH  Google Scholar 

  • Goldstein S (1995) Antisymmetric functionals of reversible Markov processes. Ann Inst Henri Poincaré Probab Stat 31(1):177–190

    MATH  Google Scholar 

  • Helland IS (1982) Central limit theorems for martingales with discrete or continuous time. Scand J Stat 9(2):79–94

    MathSciNet  MATH  Google Scholar 

  • Horváth I, Tóth B, Vető B (2010) Diffusive limits for “true” (or myopic) self-avoiding random walks and self-repellent Brownian polymers in d≥3. arXiv:1009.0401

  • Jacod J, Shiryaev AN (1987) Limit theorems for stochastic processes. Grundlehren der Mathematischen Wissenschaften [Fundamental principles of mathematical sciences], vol 288. Springer, Berlin

    Book  MATH  Google Scholar 

  • Karatzas I, Shreve SE (1991) Brownian motion and stochastic calculus. Graduate texts in mathematics, vol 113, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Kipnis C (1986) Central limit theorems for infinite series of queues and applications to simple exclusion. Ann Probab 14(2):397–408

    Article  MathSciNet  MATH  Google Scholar 

  • Kipnis C, Landim C (1999) Scaling limits of interacting particle systems. Grundlehren der Mathematischen Wissenschaften [Fundamental principles of mathematical sciences], vol 320. Springer, Berlin

    Book  MATH  Google Scholar 

  • Kipnis C, Varadhan SRS (1986) Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Commun Math Phys 104(1):1–19

    Article  MathSciNet  MATH  Google Scholar 

  • Komorowski T, Olla S (2003b) On the sector condition and homogenization of diffusions with a Gaussian drift. J Funct Anal 197(1):179–211

    Article  MathSciNet  MATH  Google Scholar 

  • Kontoyiannis I, Meyn SP (2003) Spectral theory and limit theorems for geometrically ergodic Markov processes. Ann Appl Probab 13(1):304–362

    Article  MathSciNet  MATH  Google Scholar 

  • Krengel U (1985) Ergodic theorems: with a supplement by Antoine Brunel. de Gruyter studies in mathematics, vol 6. de Gruyter, Berlin

    Book  MATH  Google Scholar 

  • Landim C, Yau HT (1997) Fluctuation-dissipation equation of asymmetric simple exclusion processes. Probab Theory Relat Fields 108(3):321–356

    Article  MathSciNet  MATH  Google Scholar 

  • Lawler GF, Sokal AD (1988) Bounds on the L 2 spectrum for Markov chains and Markov processes: a generalization of Cheeger’s inequality. Trans Am Math Soc 309(2):557–580

    MathSciNet  MATH  Google Scholar 

  • Levin DA, Peres Y, Wilmer EL (2009) Markov chains and mixing times: with a chapter by James G Propp and David B Wilson. Am Math Soc, Providence

    Google Scholar 

  • Lezaud P (2001) Chernoff and Berry-Esséen inequalities for Markov processes. ESAIM Probab Stat 5:183–201 (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  • Liggett TM (1985) Interacting particle systems. Grundlehren der Mathematischen Wissenschaften [Fundamental principles of mathematical sciences], vol 276. Springer, New York

    Book  MATH  Google Scholar 

  • Olla S (1994a) Homogenization of diffusion processes in random fields. Centre de mathématiques appliquées, ecole polytechnique. Available at http://www.ceremade.dauphine.fr/~olla/lho.ps

  • Osada H (1998a) An invariance principle for Markov processes and Brownian particles with singular interaction. Ann Inst Henri Poincaré Probab Stat 34(2):217–248

    Article  MathSciNet  MATH  Google Scholar 

  • Osada H, Saitoh T (1995) An invariance principle for non-symmetric Markov processes and reflecting diffusions in random domains. Probab Theory Relat Fields 101(1):45–63

    Article  MathSciNet  MATH  Google Scholar 

  • Rebolledo R (1980) Central limit theorems for local martingales. Z Wahrscheinlichkeitstheor Verw Geb 51(3):269–286

    Article  MathSciNet  MATH  Google Scholar 

  • Rogers LCG, Williams D (2000) Diffusions, Markov processes, and martingales, vol 1: foundations. Cambridge mathematical library. Cambridge University Press, Cambridge. Reprint of the second 1994 edition

    MATH  Google Scholar 

  • Sethuraman S, Varadhan SRS, Yau HT (2000) Diffusive limit of a tagged particle in asymmetric simple exclusion processes. Commun Pure Appl Math 53(8):972–1006

    Article  MathSciNet  MATH  Google Scholar 

  • Tóth B (1986) Persistent random walks in random environment. Probab Theory Relat Fields 71(4):615–625

    Article  MathSciNet  MATH  Google Scholar 

  • Varadhan SRS (1995) Self-diffusion of a tagged particle in equilibrium for asymmetric mean zero random walk with simple exclusion. Ann Inst Henri Poincaré Probab Stat 31(1):273–285

    MathSciNet  MATH  Google Scholar 

  • Whitt W (2007) Proofs of the martingale FCLT. Probab Surv 4:268–302

    Article  MathSciNet  MATH  Google Scholar 

  • Wu L (1999) Forward-backward martingale decomposition and compactness results for additive functionals of stationary ergodic Markov processes. Ann Inst Henri Poincaré Probab Stat 35(2):121–141

    Article  MATH  Google Scholar 

  • Yosida K (1995) Functional analysis. Classics in mathematics. Springer, Berlin. Reprint of the sixth 1980 edition

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Komorowski, T., Landim, C., Olla, S. (2012). Central Limit Theorems. In: Fluctuations in Markov Processes. Grundlehren der mathematischen Wissenschaften, vol 345. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29880-6_2

Download citation

Publish with us

Policies and ethics