Skip to main content

The Transcriptional Regulatory Network of Corynebacterium glutamicum

  • Chapter
  • First Online:
Corynebacterium glutamicum

Part of the book series: Microbiology Monographs ((MICROMONO,volume 23))

Abstract

Over the past few years, the transcriptional regulation of gene expression was intensively studied in the Gram-positive model organism Corynebacterium glutamicum to shed light on its gene regulatory repertoire and the architecture of its transcriptional regulatory network. The combination of several computational methods revealed a set of at least 159 regulatory proteins, which form the minimal transcriptional regulatory repertoire of the type strain C. glutamicum ATCC 13032. Most of these regulatory proteins have a direct role as a DNA-binding transcription regulator or sigma factor, while others have less well-defined functions in transcriptional regulation. Considerable information on 88 transcription regulators has been accumulated and stored in the online reference database CoryneRegNet, leading to a data set of more than 1,000 interactions between regulatory proteins and their target genes. Based on this comprehensive collection of gene-regulatory data, we have achieved great improvements in understanding the regulatory and coregulatory interactions of the various transcription regulators, their connection by hierarchical cross-regulation, and the topology of the transcriptional regulatory network. The genome-wide reconstruction of the transcriptional regulatory network with the graph visualization feature of CoryneRegNet reveals a highly connected architecture that displays a modular and hierarchical structure without feedback regulation at the transcriptional level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aderem A (2005) Systems biology: its practice and challenges. Cell 121:511–513

    Article  PubMed  CAS  Google Scholar 

  • Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev Genet 8:450–461

    Article  PubMed  CAS  Google Scholar 

  • Andrews SC, Robinson AK, Rodríguez-Quiñones F (2003) Bacterial ion homeostasis. FEMS Microbiol Rev 27:215–237

    Article  PubMed  CAS  Google Scholar 

  • Aravind L, Anantharaman V, Balaji S, Babu MM, Iyer LM (2005) The many faces of the helix-turn-helix domain: transcription regulation and beyond. FEMS Microbiol Rev 29:231–262

    PubMed  CAS  Google Scholar 

  • Babu MM, Luscombe NM, Aravind L, Gerstein M, Teichmann SA (2004) Structure and evolution of transcriptional regulatory networks. Curr Opin Struct Biol 14:283–291

    Article  PubMed  CAS  Google Scholar 

  • Baumbach J (2007) CoryneRegNet 4.0: a reference database for corynebacterial gene regulatory networks. BMC Bioinformatics 8:429

    Article  PubMed  Google Scholar 

  • Baumbach J, Brinkrolf K, Czaja LF, Rahmann S, Tauch A (2006) CoryneRegNet: an ontology-based data warehouse of corynebacterial transcription factors and regulatory networks. BMC Genomics 7:24

    Article  PubMed  Google Scholar 

  • Baumbach J, Wittkop T, Kleindt CK, Tauch A (2009) Integrated analysis and reconstruction of microbial transcriptional gene regulatory networks using CoryneRegNet. Nat Protoc 4:992–1005

    Article  PubMed  Google Scholar 

  • Bhardwaj N, Yu KK, Gerstein MB (2010) Analysis of diverse regulatory networks in a hierarchical context shows consistent tendencies for collaboration in the middle levels. Proc Natl Acad Sci USA 107:6841–6848

    Article  PubMed  CAS  Google Scholar 

  • Blencowe DK, Morby AP (2003) Zn(II) metabolism in prokaryotes. FEMS Microbiol Rev 27:291–311

    Article  PubMed  CAS  Google Scholar 

  • Brinkrolf K, Brune I, Tauch A (2007) The transcriptional regulatory network of the amino acid producer Corynebacterium glutamicum. J Biotechnol 129:191–211

    Article  PubMed  CAS  Google Scholar 

  • Brinkrolf K, Schröder J, Pühler A, Tauch A (2010) The transcriptional regulatory repertoire of Corynebacterium glutamicum: reconstruction of the network controlling pathways involved in lysine and glutamate production. J Biotechnol 149:173–182

    Article  PubMed  CAS  Google Scholar 

  • Brune I, Brinkrolf K, Kalinowski J, Pühler A, Tauch A (2005) The individual and common repertoire of DNA-binding transcriptional regulators of Corynebacterium glutamicum, Corynebacterium efficiens, Corynebacterium diphtheriae and Corynebacterium jeikeium deduced from the complete genome sequences. BMC Genomics 6:86

    Article  PubMed  Google Scholar 

  • Brune I, Werner H, Hüser AT, Kalinowski J, Pühler A, Tauch A (2006) The DtxR protein acting as dual transcriptional regulator directs a global regulatory network involved in iron metabolism of Corynebacterium glutamicum. BMC Genomics 7:21

    Article  PubMed  Google Scholar 

  • Canneva F, Branzoni M, Riccardi G, Provvedi R, Milano A (2005) Rv2358 and FurB: two transcriptional regulators from Mycobacterium tuberculosis which respond to zinc. J Bacteriol 187:5837–5840

    Article  PubMed  CAS  Google Scholar 

  • Cohen-Gonsaud M, Barthe P, Canova MJ, Stagier-Simon C, Kremer L, Roumestand C, Molle V (2009) The Mycobacterium tuberculosis Ser/Thr kinase substrate Rv2175c is a DNA-binding protein regulated by phosphorylation. Proc Natl Acad Sci USA 284:19290–19300

    CAS  Google Scholar 

  • Dobrin R, Beg QK, Barabási AL, Oltvai ZN (2004) Aggregation of topological motifs in the Escherichia coli transcriptional regulatory network. BMC Bioinformatics 5:10

    Article  PubMed  Google Scholar 

  • Fanous A, Weiss W, Görg A, Jacob F, Parlar H (2008) A proteome analysis of the cadmium and mercury response in Corynebacterium glutamicum. Proteomics 8:4976–4986

    Article  PubMed  CAS  Google Scholar 

  • Fanous A, Hecker M, Görg A, Parlar H, Jacob F (2010) Corynebacterium glutamicum as an indicator for environmental cobalt and silver stress—A proteome analysis. J Environ Sci Health B 45:666–675

    Article  PubMed  CAS  Google Scholar 

  • Freyre-González JA, Alonso-Pavón JA, Treviño-Quintanilla LG, Collado-Vides J (2008) Functional architecture of Escherichia coli: new insights provided by a natural decomposition approach. Genome Biol 9:R154

    Article  PubMed  Google Scholar 

  • Gao B, Paramanathan R, Gupta RS (2006) Signature proteins that are distinctive characteristics of Actinobacteria and their subgroups. Antonie Van Leeuwenhoek 90:69–91

    Article  PubMed  CAS  Google Scholar 

  • Haas CE, Rodionov DA, Kropat J, Malasarn D, Merchant SS, de Crecy-Lagard V (2009) A subset of the diverse COG0523 family of putative metal chaperones is linked to zinc homeostasis in all kingdoms of life. BMC Genomics 10:470

    Article  PubMed  Google Scholar 

  • Herrgård MJ, Covert MW, Palsson BØ (2004) Reconstruction of microbial transcriptional regulatory networks. Curr Opin Biotechnol 15:70–77

    Article  PubMed  Google Scholar 

  • Holmes RK (2000) Biology and molecular epidemiology of diphtheria toxin and the tox gene. J Infect Dis 181:S156–S167

    Article  PubMed  CAS  Google Scholar 

  • Ikeda M, Nakagawa S (2003) The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62:99–109

    Article  PubMed  CAS  Google Scholar 

  • Inui M, Murakami S, Okino S, Kawaguchi H, Vertès AA, Yukawa H (2004) Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen-deprivation conditions. J Mol Microbiol Biotechnol 7:182–196

    Article  PubMed  CAS  Google Scholar 

  • Jacob F (1972) Genetics of the bacterial cell. In: Foundation N (ed) Nobel lectures, physiology or medicine 1963–1970. Elsevier, Amsterdam, pp 148–171

    Google Scholar 

  • Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Krämer R, Linke B, McHardy AC, Meyer F, Möckel B, Pfefferle W, Pühler A, Rey DA, Rückert C, Rupp O, Sahm H, Wendisch VF, Wiegräbe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25

    Article  PubMed  CAS  Google Scholar 

  • Kimura E (2003) Metabolic engineering of glutamate production. Adv Biochem Eng Biotechnol 79:37–57

    PubMed  CAS  Google Scholar 

  • Kjeldsen KR, Nielsen J (2009) In silico genome-scale reconstruction and validation of the Corynebacterium glutamicum metabolic network. Biotechnol Bioeng 102:583–597

    Article  PubMed  CAS  Google Scholar 

  • Kočan M, Schaffer S, Ishige T, Sorger-Herrmann U, Wendisch VF, Bott M (2006) Two-component systems of Corynebacterium glutamicum: deletion analysis and involvement of the PhoS-PhoR system in the phosphate starvation response. J Bacteriol 188:724–732

    Article  PubMed  Google Scholar 

  • Kohl TA, Tauch A (2009) The GlxR regulon of the amino acid producer Corynebacterium glutamicum: Detection of the corynebacterial core regulon and integration into the transcriptional regulatory network model. J Biotechnol 143:239–246

    Article  PubMed  CAS  Google Scholar 

  • Kohl TA, Baumbach J, Jungwirth B, Pühler A, Tauch A (2008) The GlxR regulon of the amino acid producer Corynebacterium glutamicum: in silico and in vitro detection of DNA binding sites of a global transcription regulator. J Biotechnol 135:340–350

    Article  PubMed  CAS  Google Scholar 

  • Konstantinidis KT, Tiedje JM (2004) Trends between gene content and genome size in prokaryotic species with larger genomes. Proc Natl Acad Sci USA 101:3160–3165

    Article  PubMed  CAS  Google Scholar 

  • Lee JW, Helmann JD (2007) Functional specialization within the Fur family of metalloregulators. Biometals 20:485–499

    Article  PubMed  CAS  Google Scholar 

  • Leuchtenberger W, Huthmacher K, Drauz K (2005) Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 69:1–8

    Article  PubMed  CAS  Google Scholar 

  • Ma HW, Buer J, Zeng AP (2004a) Hierarchical structure and modules in the Escherichia coli transcriptional regulatory network revealed by a new top-down approach. BMC Bioinformatics 5:199

    Article  PubMed  Google Scholar 

  • Ma HW, Kumar B, Ditges U, Gunzer F, Buer J, Zeng AP (2004b) An extended transcriptional regulatory network of Escherichia coli and analysis of its hierarchical structure and network motifs. Nucleic Acids Res 32:6643–6649

    Article  PubMed  CAS  Google Scholar 

  • Makarova KS, Mironov AA, Gelfand MS (2001) Conservation of the binding site for the arginine repressor in all bacterial lineages. Genome Biol 2:R13

    Google Scholar 

  • Mangan S, Alon U (2003) Structure and function of the feed-forward loop network motif. Proc Natl Acad Sci USA 100:11980–11985

    Article  PubMed  CAS  Google Scholar 

  • Marchler-Bauer A, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, Liu C, Lu F, Lu S, Marchler GH, Mullokandov M, Song JS, Tasneem A, Thanki N, Yamashita RA, Zhang D, Zhang N, Bryant SH (2009) CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res 37:D205–D210

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Antonio A, Collado-Vides J (2003) Identifying global regulators in transcriptional regulatory networks in bacteria. Curr Opin Microbiol 6:482–489

    Article  PubMed  Google Scholar 

  • Martínez-Antonio A, Medina-Rivera A, Collado-Vides J (2009) Structural and functional map of a bacterial nucleoid. Genome Biol 10:247

    Article  PubMed  Google Scholar 

  • Mateos LM, Ordóñez E, Letek M, Gil JA (2006) Corynebacterium glutamicum as a model bacterium for the bioremediation of arsenic. Int Microbiol 9:207–215

    PubMed  CAS  Google Scholar 

  • Milano A, Branzoni M, Canneva F, Profumo A, Riccardi G (2004) The Mycobacterium tuberculosis Rv2358-furB operon is induced by zinc. Res Microbiol 155:192–200

    Article  PubMed  CAS  Google Scholar 

  • Moreno-Campuzano S, Janga SC, Pérez-Rueda E (2006) Identification and analysis of DNA-binding transcription factors in Bacillus subtilis and other Firmicutes - a genomic approach. BMC Genomics 7:147

    Article  PubMed  Google Scholar 

  • Mukhopadhyay R, Rosen BP, Phung LT, Silver S (2002) Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol Rev 26:311–325

    Article  PubMed  CAS  Google Scholar 

  • Oram DM, Avdalovic A, Holmes RK (2004) Analysis of genes that encode DtxR-like transcriptional regulators in pathogenic and saprophytic corynebacterial species. Infect Immun 72:1885–1895

    Article  PubMed  CAS  Google Scholar 

  • Ordóñez E, Letek M, Valbuena N, Gil JA, Mateos LM (2005) Analysis of genes involved in arsenic resistance in Corynebacterium glutamicum ATCC 13032. Appl Environ Microbiol 71:6206–6215

    Article  PubMed  Google Scholar 

  • Ordóñez E, Thiyagarajan S, Cook JD, Stemmler TL, Gil JA, Mateos LM, Rosen BP (2008) Evolution of metal(loid) binding sites in transcriptional regulators. J Biol Chem 283:25706–25714

    Article  PubMed  Google Scholar 

  • Ordóñez E, Van Belle K, Roos G, De Galan S, Letek M, Gil JA, Wyns L, Mateos LM, Messens J (2009) Arsenate reductase, mycothiol, and mycoredoxin concert thiol/disulfide exchange. J Biol Chem 284:15107–15116

    Article  PubMed  Google Scholar 

  • Pérez-Rueda E, Collado-Vides J (2000) The repertoire of DNA-binding transcriptional regulators in Escherichia coli K-12. Nucleic Acids Res 28:1838–1847

    Article  PubMed  Google Scholar 

  • Pérez-Rueda E, Gralla JD, Collado-Vides J (1998) Genomic position analyses and the transcription machinery. J Mol Biol 275:165–170

    Article  PubMed  Google Scholar 

  • Pérez-Rueda E, Collado-Vides J, Segovia L (2004) Phylogenetic distribution of DNA-binding transcription factors in bacteria and archaea. Comput Biol Chem 28:341–350

    Article  PubMed  Google Scholar 

  • Pfefferle W, Möckel B, Bathe B, Marx A (2003) Biotechnological manufacture of lysine. Adv Biochem Eng Biotechnol 79:59–112

    PubMed  CAS  Google Scholar 

  • Ranea JA, Buchan DW, Thornton JM, Orengo CA (2004) Evolution of protein superfamilies and bacterial genome size. J Mol Biol 336:871–887

    Article  PubMed  CAS  Google Scholar 

  • Resendis-Antonio O, Freyre-González JA, Menchaca-Méndez R, Gutiérrez-Ríos RM, Martínez-Antonio A, Avila-Sánchez C, Collado-Vides J (2005) Modular analysis of the transcriptional regulatory network of E. coli. Trends Genet 21:16–20

    Article  PubMed  CAS  Google Scholar 

  • Riccardi G, Milano A, Pasca MR, Nies DH (2008) Genomic analysis of zinc homeostasis in Mycobacterium tuberculosis. FEMS Microbiol Lett 287:1–7

    Article  PubMed  CAS  Google Scholar 

  • Rice JJ, Tu Y, Stolovitzky G (2005) Reconstructing biological networks using conditional correlation analysis. Bioinformatics 21:765–773

    Article  PubMed  CAS  Google Scholar 

  • Rodionov DA (2007) Comparative genomic reconstruction of transcriptional regulatory networks in bacteria. Chem Rev 107:3467–3497

    Article  PubMed  CAS  Google Scholar 

  • Rodionov DA, Gelfand MS (2005) Identification of a bacterial regulatory system for ribonucleotide reductases by phylogenetic profiling. Trends Genet 21:385–389

    Article  PubMed  CAS  Google Scholar 

  • Rodionov DA, De Ingeniis J, Mancini C, Cimadamore F, Zhang H, Osterman AL, Raffaelli N (2008) Transcriptional regulation of NAD metabolism in bacteria: NrtR family of Nudix-related regulators. Nucleic Acids Res 36:2047–2059

    Article  PubMed  CAS  Google Scholar 

  • Rosenfeld N, Elowitz MB, Alon U (2002) Negative autoregulation speeds the response times of transcription networks. J Mol Biol 323:785–793

    Article  PubMed  CAS  Google Scholar 

  • Schröder J, Tauch A (2010) Transcriptional regulation of gene expression in Corynebacterium glutamicum: the role of global, master and local regulators in the modular and hierarchical gene regulatory network. FEMS Microbiol Rev 34:685–737

    PubMed  Google Scholar 

  • Schröder J, Jochmann N, Rodionov DA, Tauch A (2010) The Zur regulon of Corynebacterium glutamicum ATCC 13032. BMC Genomics 11:12

    Article  PubMed  Google Scholar 

  • Schweitzer JE, Stolz M, Diesveld R, Etterich H, Eggeling L (2009) The serine hydroxymethyltransferase gene glyA in Corynebacterium glutamicum is controlled by GlyR. J Biotechnol 139:214–221

    Article  PubMed  CAS  Google Scholar 

  • Seshasayee AS, Bertone P, Fraser GM, Luscombe NM (2006) Transcriptional regulatory networks in bacteria: from input signals to output responses. Curr Opin Microbiol 9:511–519

    Article  PubMed  CAS  Google Scholar 

  • Shen-Orr SS, Milo R, Mangan S, Alon U (2002) Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 31:64–68

    Article  PubMed  CAS  Google Scholar 

  • Shinfuku Y, Sorpitiporn N, Sono M, Furusawa C, Hirasawa T, Shimizu H (2009) Development and experimental verification of a genome-scale metabolic model of Corynebacterium glutamicum. Microb Cell Fact 8:43

    Article  PubMed  Google Scholar 

  • Stormo GD, Tan K (2002) Mining genome databases to identify and understand new gene regulatory systems. Curr Opin Microbiol 5:149–153

    Article  PubMed  CAS  Google Scholar 

  • Tompa M, Li N, Bailey TL, Church GM, De Moor B, Eskin E, Favorov AV, Frith MC, Fu Y, Kent WJ, Makeev VJ, Mironov AA, Noble WS, Pavesi G, Pesole G, Régnier M, Simonis N, Sinha S, Thijs G, van Helden J, Vandenbogaert M, Weng Z, Workman C, Ye C, Zhu Z (2005) Assessing computational tools for the discovery of transcription factor binding sites. Nat Biotechnol 23:137–144

    Article  PubMed  CAS  Google Scholar 

  • Udaka S (1960) Screening method for microorganisms accumulating metabolites and its use in isolation of Micrococcus glutamicus. J Bacteriol 79:754–755

    PubMed  CAS  Google Scholar 

  • Venancio TM, Aravind L (2009) Reconstructing prokaryotic transcriptional regulatory networks: lessons from actinobacteria. J Biol 8:29

    Article  PubMed  Google Scholar 

  • Walter B, Hänßler E, Kalinowski J, Burkovski A (2007) Nitrogen metabolism and nitrogen control in corynebacteria: variations of a common theme. J Mol Microbiol Biotechnol 12:131–138

    Article  PubMed  CAS  Google Scholar 

  • Wendisch VF (2003) Genome-wide expression analysis in Corynebacterium glutamicum using DNA microarrays. J Biotechnol 104:273–285

    Article  PubMed  CAS  Google Scholar 

  • Wendisch VF, Bott M, Eikmanns BJ (2006) Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Curr Opin Microbiol 9:268–274

    Article  PubMed  CAS  Google Scholar 

  • Wennerhold J, Bott M (2006) The DtxR regulon of Corynebacterium glutamicum. J Bacteriol 188:2907–2918

    Article  PubMed  CAS  Google Scholar 

  • Wennerhold J, Krug A, Bott M (2005) The AraC-type regulator RipA represses aconitase and other iron proteins from Corynebacterium under iron limitation and is itself repressed by DtxR. J Biol Chem 280:40500–40508

    Article  PubMed  CAS  Google Scholar 

  • Yu H, Luscombe NM, Qian J, Gerstein M (2003) Genomic analysis of gene expression relationships in transcriptional regulatory networks. Trends Genet 19:422–427

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Tauch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schröder, J., Tauch, A. (2013). The Transcriptional Regulatory Network of Corynebacterium glutamicum . In: Yukawa, H., Inui, M. (eds) Corynebacterium glutamicum. Microbiology Monographs, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29857-8_8

Download citation

Publish with us

Policies and ethics