Skip to main content

Transcriptome/Proteome Analysis of Corynebacterium glutamicum

  • Chapter
  • First Online:
Corynebacterium glutamicum

Part of the book series: Microbiology Monographs ((MICROMONO,volume 23))

Abstract

Our understanding of Corynebacterium glutamicum has been revolutionized since its genome sequence, whole-genome DNA microarrays for transcriptome analysis, and proteomics techniques have become available. This chapter describes how DNA microarray-based transcriptome analyses as well as cytosolic and membrane proteomics have expedited the knowledge about the physiology and metabolic regulation of C. glutamicum with respect to fundamental and applied research. Recent examples of employing transcriptome analysis to study stimulons, transcriptional regulators, in particular of carbon metabolism and the stress response, to characterize in vivo-evolved strains, for pathway identification, genome instabilities, and strain development for amino acid production are given along with an outlook into future development of transcriptomics due to technical developments. The status quo of C. glutamicum proteomics by classical 2D gel electrophoresis and more recent techniques also allowing the study of membrane proteins are described. Emphasis is given to the posttranslational modification of C. glutamicum proteins by phosphorylation, glycosylation, and N-terminal processing. Selected examples of studying protein–DNA and protein–protein interactions are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ansorge WJ (2009) Next-generation DNA sequencing techniques. Nat Biotechnol 25:195–203

    CAS  Google Scholar 

  • Arndt A, Eikmanns BJ (2007) The alcohol dehydrogenase gene adhA in Corynebacterium glutamicum is subject to carbon catabolite repression. J Bacteriol 189:7408–7416

    PubMed  CAS  Google Scholar 

  • Arndt A, Auchter M, Ishige T, Wendisch VF, Eikmanns BJ (2008) Ethanol catabolism in Corynebacterium glutamicum. J Mol Microbiol Biotechnol 15:222–233

    PubMed  CAS  Google Scholar 

  • Auchter M, Arndt A, Eikmanns BJ (2009) Dual transcriptional control of the acetaldehyde dehydrogenase gene ald of Corynebacterium glutamicum by RamA and RamB. J Biotechnol 140:84–91

    PubMed  CAS  Google Scholar 

  • Auchter M et al (2011) RamA and RamB are global transcriptional regulators in Corynebacterium glutamicum and control genes for enzymes of the central metabolism. J Biotechnol 154(2–3):126–139

    PubMed  CAS  Google Scholar 

  • Barreiro C, Gonzalez-Lavado E, Brand S, Tauch A, Martin JF (2005) Heat shock proteome analysis of wild-type Corynebacterium glutamicum ATCC 13032 and a spontaneous mutant lacking GroEL1, a dispensable chaperone. J Bacteriol 187:884–889

    PubMed  CAS  Google Scholar 

  • Barreiro C, Nakunst D, Huser AT, de Paz HD, Kalinowski J, Martin JF (2009) Microarray studies reveal a ‘differential response’ to moderate or severe heat shock of the HrcA- and HspR-dependent systems in Corynebacterium glutamicum. Microbiology 155:359–372

    PubMed  CAS  Google Scholar 

  • Barriuso-Iglesias M, Schluesener D, Barreiro C, Poetsch A, Martin JF (2008) Response of the cytoplasmic and membrane proteome of Corynebacterium glutamicum ATCC 13032 to pH changes. BMC Microbiol 8:225

    PubMed  Google Scholar 

  • Bartek T et al (2010) Studies on substrate utilisation in L: -valine-producing Corynebacterium glutamicum strains deficient in pyruvate dehydrogenase complex. Bioprocess Biosyst Eng 33(7):873–883

    PubMed  CAS  Google Scholar 

  • Beckers G et al (2005) Regulation of AmtR-controlled gene expression in Corynebacterium glutamicum: mechanism and characterization of the AmtR regulon. Mol Microbiol 58:580–595

    PubMed  CAS  Google Scholar 

  • Bendt AK, Burkovski A, Schaffer S, Bott M, Farwick M, Hermann T (2003) Towards a phosphoproteome map of Corynebacterium glutamicum. Proteomics 3:1637–1646

    PubMed  CAS  Google Scholar 

  • Blombach B, Seibold GM (2010) Carbohydrate metabolism in Corynebacterium glutamicum and applications for the metabolic engineering of L-lysine production strains. Appl Microbiol Biotechnol 86:1313–1322

    PubMed  CAS  Google Scholar 

  • Blombach B, Schreiner ME, Holatko J, Bartek T, Oldiges M, Eikmanns BJ (2007) L-valine production with pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum. Appl Environ Microbiol 73:2079–2084

    PubMed  CAS  Google Scholar 

  • Blombach B, Schreiner ME, Bartek T, Oldiges M, Eikmanns BJ (2008) Corynebacterium glutamicum tailored for high-yield L-valine production. Appl Microbiol Biotechnol 79:471–479

    PubMed  CAS  Google Scholar 

  • Blombach B, Arndt A, Auchter M, Eikmanns BJ (2009a) L-Valine production during growth of pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum in the presence of ethanol or by inactivation of the transcriptional regulator SugR. Appl Environ Microbiol 75:1197–1200

    PubMed  CAS  Google Scholar 

  • Blombach B, Cramer A, Eikmanns BJ, Schreiner M (2009b) RamB is an activator of the pyruvate dehydrogenase complex subunit E1p gene in Corynebacterium glutamicum. J Mol Microbiol Biotechnol 16:236–239

    PubMed  CAS  Google Scholar 

  • Blombach B, Hans S, Bathe B, Eikmanns BJ (2009c) Acetohydroxyacid synthase, a novel target for improvement of L-lysine production by Corynebacterium glutamicum. Appl Environ Microbiol 75:419–427

    PubMed  CAS  Google Scholar 

  • Brinkrolf K, Brune I, Tauch A (2006) Transcriptional regulation of catabolic pathways for aromatic compounds in Corynebacterium glutamicum. Genet Mol Res 5:773–789

    PubMed  Google Scholar 

  • Brinkrolf K et al (2008) The LacI/GalR family transcriptional regulator UriR negatively controls uridine utilization of Corynebacterium glutamicum by binding to catabolite-responsive element (cre)-like sequences. Microbiology 154:1068–1081

    PubMed  CAS  Google Scholar 

  • Brinkrolf K, Schroder J, Pühler A, Tauch A (2010) The transcriptional regulatory repertoire of Corynebacterium glutamicum: reconstruction of the network controlling pathways involved in lysine and glutamate production. J Biotechnol 149(3):173–182

    PubMed  CAS  Google Scholar 

  • Brocker M, Bott M (2006) Evidence for activator and repressor functions of the response regulator MtrA from Corynebacterium glutamicum. FEMS Microbiol Lett 264:205–212

    PubMed  CAS  Google Scholar 

  • Brocker M, Schaffer S, Mack C, Bott M (2009) Citrate utilization by Corynebacterium glutamicum is controlled by the CitAB two-component system through positive regulation of the citrate transport genes citH and tctCBA. J Bacteriol 191:3869–3880

    PubMed  CAS  Google Scholar 

  • Burkovski A (2003) Ammonium assimilation and nitrogen control in Corynebacterium glutamicum and its relatives: an example for new regulatory mechanisms in actinomycetes. FEMS Microbiol Rev 27:617–628

    PubMed  CAS  Google Scholar 

  • Bussmann M, Emer D, Hasenbein S, Degraf S, Eikmanns BJ, Bott M (2009) Transcriptional control of the succinate dehydrogenase operon sdhCAB of Corynebacterium glutamicum by the cAMP-dependent regulator GlxR and the LuxR-type regulator RamA. J Biotechnol 143:173–182

    PubMed  CAS  Google Scholar 

  • Bussmann M, Baumgart M, Bott M (2010) ROSR (Cg1324), a hydrogen peroxide-sensitive MARR-type transcriptional regulator of Corynebacterium glutamicum. J Biol Chem 285(38):29305–29318

    PubMed  CAS  Google Scholar 

  • Cerdeno-Tarraga AM et al (2003) The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129. Nucleic Acids Res 31:6516–6523

    PubMed  CAS  Google Scholar 

  • Cramer A, Eikmanns BJ (2007) RamA, the transcriptional regulator of acetate metabolism in Corynebacterium glutamicum, is subject to negative autoregulation. J Mol Microbiol Biotechnol 12:51–59

    PubMed  CAS  Google Scholar 

  • Cramer A, Gerstmeir R, Schaffer S, Bott M, Eikmanns BJ (2006) Identification of RamA, a novel LuxR-type transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J Bacteriol 188:2554–2567

    PubMed  CAS  Google Scholar 

  • Cramer A, Auchter M, Frunzke J, Bott M, Eikmanns BJ (2007) RamB, the transcriptional regulator of acetate metabolism in Corynebacterium glutamicum, is subject to regulation by RamA and RamB. J Bacteriol 189:1145–1149

    PubMed  CAS  Google Scholar 

  • Creasy DM, Cottrell JS (2004) Unimod: protein modifications for mass spectrometry. Proteomics 4:1534–1536

    PubMed  CAS  Google Scholar 

  • Cremer J, Treptow C, Eggeling L, Sahm H (1988) Regulation of enzymes of lysine biosynthesis in Corynebacterium glutamicum. J Gen Microbiol 134:3221–3229

    PubMed  CAS  Google Scholar 

  • de Godoy LM et al (2008) Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature 455:1251–1254

    PubMed  Google Scholar 

  • Dietrich C, Nato A, Bost B, Le Marechal P, Guyonvarch A (2009) Regulation of ldh expression during biotin-limited growth of Corynebacterium glutamicum. Microbiology 155:1360–1375

    PubMed  CAS  Google Scholar 

  • Dornenburga JE, DeVitaa AM, Palumboa MJ, Wadea JT (2010) Widespread antisense transcription in Escherichia coli. doi:10.1128/mBio.00024-10

  • Eggeling L, Bott M (2005) Handbook of Corynebacterium glutamicum. CRC, Boca Raton, FL

    Google Scholar 

  • Ehira S, Ogino H, Teramoto H, Inui M, Yukawa H (2009) Regulation of quinone oxidoreductase by the redox-sensing transcriptional regulator QorR in Corynebacterium glutamicum. J Biol Chem 284:16736–16742

    PubMed  CAS  Google Scholar 

  • Ehira S, Teramoto H, Inui M, Yukawa H (2010) A novel redox-sensing transcriptional regulator CyeR controls expression of an Old Yellow Enzyme family protein in Corynebacterium glutamicum. Microbiology 156:1335–1341

    PubMed  CAS  Google Scholar 

  • Eikmanns BJ, Kleinertz E, Liebl W, Sahm H (1991) A family of Corynebacterium glutamicum/Escherichia coli shuttle vectors for cloning, controlled gene expression, and promoter probing. Gene 102:93–98

    PubMed  CAS  Google Scholar 

  • Emer D, Krug A, Eikmanns BJ, Bott M (2009) Complex expression control of the Corynebacterium glutamicum aconitase gene: identification of RamA as a third transcriptional regulator besides AcnR and RipA. J Biotechnol 140:92–98

    PubMed  CAS  Google Scholar 

  • Engels V, Wendisch VF (2007) The DeoR-type regulator SugR represses expression of ptsG in Corynebacterium glutamicum. J Bacteriol 189:2955–2966

    PubMed  CAS  Google Scholar 

  • Engels S, Schweitzer JE, Ludwig C, Bott M, Schaffer S (2004) clpC and clpP1P2 gene expression in Corynebacterium glutamicum is controlled by a regulatory network involving the transcriptional regulators ClgR and HspR as well as the ECF sigma factor sigmaH. Mol Microbiol 52:285–302

    PubMed  CAS  Google Scholar 

  • Engels V, Georgi T, Wendisch VF (2008a) ScrB (Cg2927) is a sucrose-6-phosphate hydrolase essential for sucrose utilization by Corynebacterium glutamicum. FEMS Microbiol Lett 289:80–89

    PubMed  CAS  Google Scholar 

  • Engels V, Lindner SN, Wendisch VF (2008b) The global repressor SugR controls expression of genes of glycolysis and of the L-lactate dehydrogenase LdhA in Corynebacterium glutamicum. J Bacteriol 190:8033–8044

    PubMed  CAS  Google Scholar 

  • Fanous A, Weiland F, Luck C, Gorg A, Friess A, Parlar H (2007) A proteome analysis of Corynebacterium glutamicum after exposure to the herbicide 2,4-dichlorophenoxy acetic acid (2,4-D). Chemosphere 69:25–31

    PubMed  CAS  Google Scholar 

  • Fanous A, Weiss W, Gorg A, Jacob F, Parlar H (2008) A proteome analysis of the cadmium and mercury response in Corynebacterium glutamicum. Proteomics 8:4976–4986

    PubMed  CAS  Google Scholar 

  • Figge RM (2007) Methionine biosynthesis in Escherichia coli and Corynebacterium glutamicum. In: Wendisch VF (ed) Amino acid biosynthesis – pathways, regulation and metabolic engineering. Springer, Heidelberg, Germany

    Google Scholar 

  • Fischer F, Poetsch A (2006) Protein cleavage strategies for an improved analysis of the membrane proteome. Proteome Sci 4:2

    PubMed  Google Scholar 

  • Fischer F, Wolters D, Rogner M, Poetsch A (2006) Toward the complete membrane proteome: high coverage of integral membrane proteins through transmembrane peptide detection. Mol Cell Proteomics 5:444–453

    PubMed  CAS  Google Scholar 

  • Fiuza M et al (2008a) The MurC ligase essential for peptidoglycan biosynthesis is regulated by the serine/threonine protein kinase PknA in Corynebacterium glutamicum. J Biol Chem 283:36553–36563

    PubMed  CAS  Google Scholar 

  • Fiuza M et al (2008b) From the characterization of the four serine/threonine protein kinases (PknA/B/G/L) of Corynebacterium glutamicum toward the role of PknA and PknB in cell division. J Biol Chem 283:18099–18112

    PubMed  CAS  Google Scholar 

  • Fiuza M et al (2010) Phosphorylation of a novel cytoskeletal protein (RsmP) regulates rod-shape morphology in Corynebacterium glutamicum. J Biol Chem 285(38):29387–29397

    PubMed  CAS  Google Scholar 

  • Follmann M et al (2009) Functional genomics of pH homeostasis in Corynebacterium glutamicum revealed novel links between pH response, oxidative stress, iron homeostasis and methionine synthesis. BMC Genomics 10:621

    PubMed  Google Scholar 

  • Franzel B, Fischer F, Trotschel C, Poetsch A, Wolters D (2009) The two-phase partitioning system–a powerful technique to purify integral membrane proteins of Corynebacterium glutamicum for quantitative shotgun analysis. Proteomics 9:2263–2272

    PubMed  Google Scholar 

  • Franzel B, Frese C, Penkova M, Metzler-Nolte N, Bandow JE, Wolters DA (2010a) Corynebacterium glutamicum exhibits a membrane-related response to a small ferrocene-conjugated antimicrobial peptide. J Biol Inorg Chem 2010:25

    Google Scholar 

  • Franzel B, Poetsch A, Trotschel C, Persicke M, Kalinowski J, Wolters DA (2010b) Quantitative proteomic overview on the Corynebacterium glutamicum l-lysine producing strain DM1730. J Proteomics 73(12):2336–2353

    PubMed  Google Scholar 

  • Franzel B, Trotschel C, Ruckert C, Kalinowski J, Poetsch A, Wolters DA (2010c) Adaptation of Corynebacterium glutamicum to salt-stress conditions. Proteomics 10:445–457

    PubMed  Google Scholar 

  • Frunzke J, Bramkamp M, Schweitzer JE, Bott M (2008a) Population heterogeneity in Corynebacterium glutamicum ATCC 13032 caused by prophage CGP3. J Bacteriol 190:5111–5119

    PubMed  CAS  Google Scholar 

  • Frunzke J, Engels V, Hasenbein S, Gatgens C, Bott M (2008b) Co-ordinated regulation of gluconate catabolism and glucose uptake in Corynebacterium glutamicum by two functionally equivalent transcriptional regulators, GntR1 and GntR2. Mol Microbiol 67:305–322

    PubMed  CAS  Google Scholar 

  • Gaigalat L et al (2007) The DeoR-type transcriptional regulator SugR acts as a repressor for genes encoding the phosphoenolpyruvate:sugar phosphotransferase system (PTS) in Corynebacterium glutamicum. BMC Mol Biol 8:104

    PubMed  Google Scholar 

  • Gao YG et al (2008) Structural and functional characterization of the LldR from Corynebacterium glutamicum: a transcriptional repressor involved in L-lactate and sugar utilization. Nucleic Acids Res 36:7110–7123

    PubMed  CAS  Google Scholar 

  • Georgi T, Engels V, Wendisch VF (2008) Regulation of L-lactate utilization by the FadR-type regulator LldR of Corynebacterium glutamicum. J Bacteriol 190:963–971

    PubMed  CAS  Google Scholar 

  • Gerstmeir R et al (2003) Acetate metabolism and its regulation in Corynebacterium glutamicum. J Biotechnol 104:99–122

    PubMed  CAS  Google Scholar 

  • Gerstmeir R, Cramer A, Dangel P, Schaffer S, Eikmanns BJ (2004) RamB, a novel transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J Bacteriol 186:2798–2809

    PubMed  CAS  Google Scholar 

  • Gorg A et al (2000) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21:1037–1053

    PubMed  CAS  Google Scholar 

  • Gorke B, Vogel J (2008) Noncoding RNA control of the making and breaking of sugars. Genes Dev 22:2914–2925

    PubMed  Google Scholar 

  • Gstaiger M, Aebersold R (2009) Applying mass spectrometry-based proteomics to genetics, genomics and network biology. Nat Rev Genet 10:617–627

    PubMed  CAS  Google Scholar 

  • Hansmeier N, Chao TC, Pühler A, Tauch A, Kalinowski J (2006) The cytosolic, cell surface and extracellular proteomes of the biotechnologically important soil bacterium Corynebacterium efficiens YS-314 in comparison to those of Corynebacterium glutamicum ATCC 13032. Proteomics 6:233–250

    PubMed  CAS  Google Scholar 

  • Hartmann M, Barsch A, Niehaus K, Pühler A, Tauch A, Kalinowski J (2004) The glycosylated cell surface protein Rpf2, containing a resuscitation-promoting factor motif, is involved in intercellular communication of Corynebacterium glutamicum. Arch Microbiol 182:299–312

    PubMed  CAS  Google Scholar 

  • Haussmann U, Qi SW, Wolters D, Rögner M, Liu SJ, Poetsch A (2009) Physiological adaptation of Corynebacterium glutamicum to benzoate as alternative carbon source – a membrane proteome-centric view. Proteomics 9:3635–3651

    PubMed  CAS  Google Scholar 

  • Hayashi M et al (2006a) A leuC mutation leading to increased L-lysine production and rel-independent global expression changes in Corynebacterium glutamicum. Appl Microbiol Biotechnol 72:783–789

    PubMed  CAS  Google Scholar 

  • Hayashi M, Ohnishi J, Mitsuhashi S, Yonetani Y, Hashimoto S, Ikeda M (2006b) Transcriptome analysis reveals global expression changes in an industrial L-lysine producer of Corynebacterium glutamicum. Biosci Biotechnol Biochem 70:546–550

    PubMed  CAS  Google Scholar 

  • Herick K, Jackson P, Wersch G, Burkovski A (2001) Detection of fluorescence dye-labeled proteins in 2-D gels using an Arthur 1442 Multiwavelength Fluoroimager. Biotechniques 31:146–149

    PubMed  CAS  Google Scholar 

  • Hermann T, Wersch G, Uhlemann EM, Schmid R, Burkovski A (1998) Mapping and identification of Corynebacterium glutamicum proteins by two-dimensional gel electrophoresis and microsequencing. Electrophoresis 19:3217–3221

    PubMed  CAS  Google Scholar 

  • Hermann T, Finkemeier M, Pfefferle W, Wersch G, Kramer R, Burkovski A (2000) Two-dimensional electrophoretic analysis of Corynebacterium glutamicum membrane fraction and surface proteins. Electrophoresis 21:654–659

    PubMed  CAS  Google Scholar 

  • Hermann T et al (2001) Proteome analysis of Corynebacterium glutamicum. Electrophoresis 22:1712–1723

    PubMed  CAS  Google Scholar 

  • Holatko J, Elisakova V, Prouza M, Sobotka M, Nesvera J, Patek M (2009) Metabolic engineering of the L-valine biosynthesis pathway in Corynebacterium glutamicum using promoter activity modulation. J Biotechnol 139:203–210

    PubMed  CAS  Google Scholar 

  • Huc E et al (2010) O-mycoloylated proteins from Corynebacterium: an unprecedented post-translational modification in bacteria. J Biol Chem 285:21908–21912

    PubMed  CAS  Google Scholar 

  • Ikeda M, Nakagawa S (2003) The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62:99–109

    PubMed  CAS  Google Scholar 

  • Ikeda M, Mitsuhashi S, Tanaka K, Hayashi M (2009) Reengineering of a Corynebacterium glutamicum L-arginine and L-citrulline producer. Appl Environ Microbiol 75:1635–1641

    PubMed  CAS  Google Scholar 

  • Inui M, Suda M, Okino S, Nonaka H, Puskás LG, Vertès AA, Yukawa H (2007) Transcriptional profiling of Corynebacterium glutamicum metabolism during organic acid production under oxygen deprivation conditions. Microbiology 153:2491–2504

    PubMed  CAS  Google Scholar 

  • Ishige T, Krause M, Bott M, Wendisch VF, Sahm H (2003) The phosphate starvation stimulon of Corynebacterium glutamicum determined by DNA microarray analyses. J Bacteriol 185:4519–4529

    PubMed  CAS  Google Scholar 

  • Jochmann N et al (2009) Genetic makeup of the Corynebacterium glutamicum LexA regulon deduced from comparative transcriptomics and in vitro DNA band shift assays. Microbiology 155:1459–1477

    PubMed  CAS  Google Scholar 

  • Jolkver E, Emer D, Ballan S, Kramer R, Eikmanns BJ, Marin K (2009) Identification and characterization of a bacterial transport system for the uptake of pyruvate, propionate, and acetate in Corynebacterium glutamicum. J Bacteriol 191:940–948

    PubMed  CAS  Google Scholar 

  • Jungwirth B et al (2008) Triple transcriptional control of the resuscitation promoting factor 2 (rpf2) gene of Corynebacterium glutamicum by the regulators of acetate metabolism RamA and RamB and the cAMP-dependent regulator GlxR. FEMS Microbiol Lett 281:190–197

    PubMed  CAS  Google Scholar 

  • Kalinowski J (2005) The genomes of amino acid-producing corynebacteria. In: Eggeling L, Bott M (eds) Handbook on Corynebacterium glutamicum. CRC, Boca Raton, FL, pp 37–56

    Google Scholar 

  • Kalinowski J et al (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25

    PubMed  CAS  Google Scholar 

  • Kalinowski J, Wolters DA, Poetsch A (2008) Proteomics of Corynebacterium glutamicum and other corynebacteria. In: Burkovski A (ed) Corynebacteria: genomics and molecular biology. Caister Academic, Wymondham, pp 55–77

    Google Scholar 

  • Kaufmann H, Bailey JE, Fussenegger M (2001) Use of antibodies for detection of phosphorylated proteins separated by two-dimensional gel electrophoresis. Proteomics 1:194–199

    PubMed  CAS  Google Scholar 

  • Kim HJ, Kim TH, Kim Y, Lee HS (2004) Identification and characterization of glxR, a gene involved in regulation of glyoxylate bypass in Corynebacterium glutamicum. J Bacteriol 186:3453–3460

    PubMed  CAS  Google Scholar 

  • Kim WS, Park SD, Lee SM, Kim Y, Kim P, Lee HS (2007) Expression analysis of the csp-like genes from Corynebacterium glutamicum encoding homologs of the Escherichia coli major cold-shock protein cspA. J Microbiol Biotechnol 17:1353–1360

    PubMed  CAS  Google Scholar 

  • Kind S, Jeong WK, Schroder H, Wittmann C (2010a) Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane. Metab Eng 12(4):341–351

    PubMed  CAS  Google Scholar 

  • Kind S, Jeong WK, Schroder H, Zelder O, Wittmann C (2010b) Identification and elimination of the competing N-acetyldiaminopentane pathway for improved production of diaminopentane by Corynebacterium glutamicum. Appl Environ Microbiol 76:5175–5180

    PubMed  CAS  Google Scholar 

  • Klaffl S, Eikmanns BJ (2010) Genetic and functional analysis of the soluble oxaloacetate decarboxylase from Corynebacterium glutamicum. J Bacteriol 192:2604–2612

    PubMed  CAS  Google Scholar 

  • Klein C et al (2005) The membrane proteome of Halobacterium salinarum. Proteomics 5:180–197

    PubMed  CAS  Google Scholar 

  • Klose J (1975) Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 26:231–243

    PubMed  CAS  Google Scholar 

  • Klose J, Kobalz U (1995) Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome. Electrophoresis 16:1034–1059

    PubMed  CAS  Google Scholar 

  • Knoppova M, Phensaijai M, Vesely M, Zemanova M, Nesvera J, Patek M (2007) Plasmid vectors for testing in vivo promoter activities in Corynebacterium glutamicum and Rhodococcus erythropolis. Curr Microbiol 55:234–239

    PubMed  CAS  Google Scholar 

  • Kocan M, Schaffer S, Ishige T, Sorger-Herrmann U, Wendisch VF, Bott M (2006) Two-component systems of Corynebacterium glutamicum: deletion analysis and involvement of the PhoS-PhoR system in the phosphate starvation response. J Bacteriol 188:724–732

    PubMed  CAS  Google Scholar 

  • Kohl TA, Baumbach J, Jungwirth B, Pühler A, Tauch A (2008) The GlxR regulon of the amino acid producer Corynebacterium glutamicum: in silico and in vitro detection of DNA binding sites of a global transcription regulator. J Biotechnol 135:340–350

    PubMed  CAS  Google Scholar 

  • Kramer R, Lambert C, Hoischen C, Ebbighausen H (1990) Uptake of glutamate in Corynebacterium glutamicum. 1. Kinetic properties and regulation by internal pH and potassium. Eur J Biochem 194:929–935

    PubMed  CAS  Google Scholar 

  • Krawczyk J, Kohl TA, Goesmann A, Kalinowski J, Baumbach J (2009) From Corynebacterium glutamicum to Mycobacterium tuberculosis–towards transfers of gene regulatory networks and integrated data analyses with MycoRegNet. Nucleic Acids Res 37:e97

    PubMed  Google Scholar 

  • Krawczyk S, Raasch K, Schultz C, Hoffelder M, Eggeling L, Bott M (2010) The FHA domain of OdhI interacts with the carboxyterminal 2-oxoglutarate dehydrogenase domain of OdhA in Corynebacterium glutamicum. FEBS Lett 584:1463–1468

    PubMed  CAS  Google Scholar 

  • Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    PubMed  CAS  Google Scholar 

  • Krömer JO, Sorgenfrei O, Klopprogge K, Heinzle E, Wittmann C (2004) In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome. J Bacteriol 186:1769–1784

    PubMed  Google Scholar 

  • Krüger R, Kübler D, Pallisse R, Burkovski A, Lehmann WD (2006) Protein and proteome phosphorylation stoichiometry analysis by element mass spectrometry. Anal Chem 78:1987–1994

    PubMed  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    PubMed  CAS  Google Scholar 

  • Landt SG, Abeliuk E, McGrath PT, Lesley JA, McAdams HH, Shapiro L (2008) Small non-coding RNAs in Caulobacter crescentus. Mol Microbiol 68:600–614

    PubMed  CAS  Google Scholar 

  • Lange C, Rittmann D, Wendisch VF, Bott M, Sahm H (2003) Global expression profiling and physiological characterization of Corynebacterium glutamicum grown in the presence of L-valine. Appl Environ Microbiol 69:2521–2532

    PubMed  CAS  Google Scholar 

  • Lemoine S, Combes F, Le Crom S (2009) An evaluation of custom microarray applications: the oligonucleotide design challenge. Nucleic Acids Res 37:1726–1739

    PubMed  CAS  Google Scholar 

  • Letek M, Valbuena N, Ramos A, Ordonez E, Gil JA, Mateos LM (2006) Characterization and use of catabolite-repressed promoters from gluconate genes in Corynebacterium glutamicum. J Bacteriol 188:409–423

    PubMed  CAS  Google Scholar 

  • Li L, Wada M, Yokota A (2007) A comparative proteomic approach to understand the adaptations of an H+ -ATPase-defective mutant of Corynebacterium glutamicum ATCC14067 to energy deficiencies. Proteomics 7:3348–3357

    PubMed  CAS  Google Scholar 

  • Liu H, Lin D, Yates JR 3rd (2002) Multidimensional separations for protein/peptide analysis in the post-genomic era. Biotechniques 32:898, 900, 902 passim

    Google Scholar 

  • Liu G, Wu J, Yang H, Bao Q (2010) Codon usage patterns in Corynebacterium glutamicum: mutational bias, natural selection and amino acid conservation. Comp Funct Genomics 2010:343569

    PubMed  Google Scholar 

  • Ludke A, Kramer R, Burkovski A, Schluesener D, Poetsch A (2007) A proteomic study of Corynebacterium glutamicum AAA+ protease FtsH. BMC Microbiol 7:6

    PubMed  Google Scholar 

  • Mahne M, Tauch A, Puhler A, Kalinowski J (2006) The Corynebacterium glutamicum gene pmt encoding a glycosyltransferase related to eukaryotic protein-O-mannosyltransferases is essential for glycosylation of the resuscitation promoting factor (Rpf2) and other secreted proteins. FEMS Microbiol Lett 259:226–233

    PubMed  CAS  Google Scholar 

  • Marrero J, Rhee KY, Schnappinger D, Pethe K, Ehrt S (2010) Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection. Proc Natl Acad Sci USA 107:9819–9824

    PubMed  CAS  Google Scholar 

  • Martinez-Bartolome S, Medina-Aunon JA, Jones AR, Albar JP (2010) Semi-automatic tool to describe, store and compare proteomics experiments based on MIAPE compliant reports. Proteomics 10:1256–1260

    PubMed  CAS  Google Scholar 

  • Micklinghoff JC, Breitinger KJ, Schmidt M, Geffers R, Eikmanns BJ, Bange FC (2009) Role of the transcriptional regulator RamB (Rv0465c) in the control of the glyoxylate cycle in Mycobacterium tuberculosis. J Bacteriol 191:7260–7269

    PubMed  CAS  Google Scholar 

  • Mimitsuka T, Sawai H, Hatsu M, Yamada K (2007) Metabolic Engineering of Corynebacterium glutamicum for Cadaverine Fermentation. Biosci Biotechnol Biochem 71:2130–2135

    PubMed  CAS  Google Scholar 

  • Minden JS, Dowd SR, Meyer HE, Stuhler K (2009) Difference gel electrophoresis. Electrophoresis 30(Suppl 1):S156–S161

    PubMed  Google Scholar 

  • Mishra AK et al (2007) Identification of an alpha(1–>6) mannopyranosyltransferase (MptA), involved in Corynebacterium glutamicum lipomanann biosynthesis, and identification of its orthologue in Mycobacterium tuberculosis. Mol Microbiol 65:1503–1517

    PubMed  CAS  Google Scholar 

  • Movahedzadeh F, Rison SC, Wheeler PR, Kendall SL, Larson TJ, Stoker NG (2004) The Mycobacterium tuberculosis Rv1099c gene encodes a GlpX-like class II fructose 1,6-bisphosphatase. Microbiology 150:3499–3505

    PubMed  CAS  Google Scholar 

  • Muhl D, Jessberger N, Hasselt K, Jardin C, Sticht H, Burkovski A (2009) DNA binding by Corynebacterium glutamicum TetR-type transcription regulator AmtR. BMC Mol Biol 10:73

    PubMed  Google Scholar 

  • Nentwich SS et al (2009) Characterization of the LacI-type transcriptional repressor RbsR controlling ribose transport in Corynebacterium glutamicum ATCC 13032. Microbiology 155:150–164

    PubMed  CAS  Google Scholar 

  • Netzer R et al (2004) Roles of pyruvate kinase and malic enzyme in Corynebacterium glutamicum for growth on carbon sources requiring gluconeogenesis. Arch Microbiol 182:354–363

    PubMed  CAS  Google Scholar 

  • Nicolas P, Leduc A, Robin S, Rasmussen S, Jarmer H, Bessieres P (2009) Transcriptional landscape estimation from tiling array data using a model of signal shift and drift. Bioinformatics 25:2341–2347

    PubMed  CAS  Google Scholar 

  • Niebisch A, Kabus A, Schultz C, Weil B, Bott M (2006) Corynebacterial protein kinase G controls 2-oxoglutarate dehydrogenase activity via the phosphorylation status of the OdhI protein. J Biol Chem 281:12300–12307

    PubMed  CAS  Google Scholar 

  • Nishimura T, Vertès AA, Shinoda Y, Inui M, Yukawa H (2007) Anaerobic growth of Corynebacterium glutamicum using nitrate as a terminal electron acceptor. Appl Microbiol Biotechnol 75:889–897

    PubMed  CAS  Google Scholar 

  • Nishimura T, Teramoto H, Vertès AA, Inui M, Yukawa H (2008) ArnR, a novel transcriptional regulator, represses expression of the narKGHJI operon in Corynebacterium glutamicum. J Bacteriol 190:3264–3273

    PubMed  CAS  Google Scholar 

  • Nishio Y et al (2003) Comparative complete genome sequence analysis of the amino acid replacements responsible for the thermostability of Corynebacterium efficiens. Genome Res 13:1572–1579

    PubMed  CAS  Google Scholar 

  • Nishio Y et al (2004) Evolutionary process of amino acid biosynthesis in Corynebacterium at the whole genome level. Mol Biol Evol 21:1683–1691

    PubMed  CAS  Google Scholar 

  • O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    PubMed  Google Scholar 

  • Ogino H, Teramoto H, Inui M, Yukawa H (2008) DivS, a novel SOS-inducible cell-division suppressor in Corynebacterium glutamicum. Mol Microbiol 67:597–608

    PubMed  CAS  Google Scholar 

  • Ohnishi J, Mizoguchi H, Takeno S, Ikeda M (2008) Characterization of mutations induced by N-methyl-N'-nitro-N-nitrosoguanidine in an industrial Corynebacterium glutamicum strain. Mutat Res 649:239–244

    PubMed  CAS  Google Scholar 

  • Okibe N, Suzuki N, Inui M, Yukawa H (2010) Isolation, evaluation and use of two strong, carbon source-inducible promoters from Corynebacterium glutamicum. Lett Appl Microbiol 50:173–180

    PubMed  CAS  Google Scholar 

  • Olsen JV, Ong SE, Mann M (2004) Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Mol Cell Proteomics 3:608–614

    PubMed  CAS  Google Scholar 

  • Panhorst M, Sorger-Herrmann U, Wendisch VF (2011) The pstSCAB operon for phosphate uptake is regulated by the global regulator GlxR in Corynebacterium glutamicum. J Biotechnol 154(2–3):149–155

    PubMed  CAS  Google Scholar 

  • Park SY, Moon MW, Subhadra B, Lee JK (2010) Functional characterization of the glxR deletion mutant of Corynebacterium glutamicum ATCC 13032: involvement of GlxR in acetate metabolism and carbon catabolite repression. FEMS Microbiol Lett 304:107–115

    PubMed  CAS  Google Scholar 

  • Patek M, Krumbach K, Eggeling L, Sahm H (1994) Leucine synthesis in Corynebacterium glutamicum: enzyme activities, structure of leuA, and effect of leuA inactivation on lysine synthesis. Appl Environ Microbiol 60:133–140

    PubMed  CAS  Google Scholar 

  • Patterson SD, Aebersold RH (2003) Proteomics: the first decade and beyond. Nat Genet 33(Suppl):311–323

    PubMed  CAS  Google Scholar 

  • Patton WF (2000) A thousand points of light: the application of fluorescence detection technologies to two-dimensional gel electrophoresis and proteomics. Electrophoresis 21:1123–1144

    PubMed  CAS  Google Scholar 

  • Pawson T, Scott JD (2005) Protein phosphorylation in signaling–50 years and counting. Trends Biochem Sci 30:286–290

    PubMed  CAS  Google Scholar 

  • Pieper R et al (2003) The human serum proteome: display of nearly 3700 chromatographically separated protein spots on two-dimensional electrophoresis gels and identification of 325 distinct proteins. Proteomics 3:1345–1364

    PubMed  CAS  Google Scholar 

  • Polen T, Wendisch VF (2004) Genomewide expression analysis in amino acid-producing bacteria using DNA microarrays. Appl Biochem Biotechnol 118:215–232

    PubMed  CAS  Google Scholar 

  • Polen T, Schluesener D, Poetsch A, Bott M, Wendisch VF (2007) Characterization of citrate utilization in Corynebacterium glutamicum by transcriptome and proteome analysis. FEMS Microbiol Lett 273:109–119

    PubMed  CAS  Google Scholar 

  • Prisic S et al (2010) Extensive phosphorylation with overlapping specificity by Mycobacterium tuberculosis serine/threonine protein kinases. Proc Natl Acad Sci USA 107:7521–7526

    PubMed  CAS  Google Scholar 

  • Puech V, Bayan N, Salim K, Leblon G, Daffe M (2000) Characterization of the in vivo acceptors of the mycoloyl residues transferred by the corynebacterial PS1 and the related mycobacterial antigens 85. Mol Microbiol 35:1026–1041

    PubMed  CAS  Google Scholar 

  • Qi SW et al (2007) Comparative proteomes of Corynebacterium glutamicum grown on aromatic compounds revealed novel proteins involved in aromatic degradation and a clear link between aromatic catabolism and gluconeogenesis via fructose-1,6-bisphosphatase. Proteomics 7:3775–3787

    PubMed  CAS  Google Scholar 

  • Radmacher E, Vaitsikova A, Burger U, Krumbach K, Sahm H, Eggeling L (2002) Linking central metabolism with increased pathway flux: L-valine accumulation by Corynebacterium glutamicum. Appl Environ Microbiol 68:2246–2250

    PubMed  CAS  Google Scholar 

  • Radmacher E et al (2005) Ethambutol, a cell wall inhibitor of Mycobacterium tuberculosis, elicits L-glutamate efflux of Corynebacterium glutamicum. Microbiology 151:1359–1368

    PubMed  CAS  Google Scholar 

  • Repoila F, Darfeuille F (2009) Small regulatory non-coding RNAs in bacteria: physiology and mechanistic aspects. Biol Cell 101:117–131

    PubMed  CAS  Google Scholar 

  • Riedel C et al (2001) Characterization of the phosphoenolpyruvate carboxykinase gene from Corynebacterium glutamicum and significance of the enzyme for growth and amino acid production. J Mol Microbiol Biotechnol 3:573–583

    PubMed  CAS  Google Scholar 

  • Riederer BM (2008) Non-covalent and covalent protein labeling in two-dimensional gel electrophoresis. J Proteomics 71:231–244

    PubMed  CAS  Google Scholar 

  • Rietschel B et al (2009) Elastase digests: new ammunition for shotgun membrane proteomics. Mol Cell Proteomics 8:1029–1043

    PubMed  CAS  Google Scholar 

  • Rittmann D, Schaffer S, Wendisch VF, Sahm H (2003) Fructose-1,6-bisphosphatase from Corynebacterium glutamicum: expression and deletion of the fbp gene and biochemical characterization of the enzyme. Arch Microbiol 180:285–292

    PubMed  CAS  Google Scholar 

  • Roegener J, Lutter P, Reinhardt R, Bluggel M, Meyer HE, Anselmetti D (2003) Ultrasensitive detection of unstained proteins in acrylamide gels by native UV fluorescence. Anal Chem 75:157–159

    PubMed  CAS  Google Scholar 

  • Rückert C, Kalinowski J (2008) Sulfur metabolism in Corynebacterium glutamicum. In: Burkovski A (ed) Corynebacteria: genomics and molecular biology. Caister Academic, Wymondham, pp 217–239

    Google Scholar 

  • Rückert C, Milse J, Albersmeier A, Koch DJ, Puhler A, Kalinowski J (2008) The dual transcriptional regulator CysR in Corynebacterium glutamicum ATCC 13032 controls a subset of genes of the McbR regulon in response to the availability of sulphide acceptor molecules. BMC Genomics 9:483

    PubMed  Google Scholar 

  • Santoni V, Kieffer S, Desclaux D, Masson F, Rabilloud T (2000) Membrane proteomics: use of additive main effects with multiplicative interaction model to classify plasma membrane proteins according to their solubility and electrophoretic properties. Electrophoresis 21:3329–3344

    PubMed  CAS  Google Scholar 

  • Schaffer S et al (2001) A high-resolution reference map for cytoplasmic and membrane-associated proteins of Corynebacterium glutamicum. Electrophoresis 22:4404–4422

    PubMed  CAS  Google Scholar 

  • Schindler J, Nothwang HG (2006) Aqueous polymer two-phase systems: effective tools for plasma membrane proteomics. Proteomics 6:5409–5417

    PubMed  CAS  Google Scholar 

  • Schliep A, Krause R (2008) Efficient algorithms for the computational design of optimal tiling arrays. IEEE/ACM Trans Comput Biol Bioinform 5:557–567

    PubMed  CAS  Google Scholar 

  • Schluesener D, Fischer F, Kruip J, Rogner M, Poetsch A (2005) Mapping the membrane proteome of Corynebacterium glutamicum. Proteomics 5:1317–1330

    PubMed  CAS  Google Scholar 

  • Schluesener D, Rögner M, Poetsch A (2007) Evaluation of two proteomics technologies used to screen the membrane proteomes of wild-type Corynebacterium glutamicum and an L-lysine-producing strain. Anal Bioanal Chem 389:1055–1064

    PubMed  CAS  Google Scholar 

  • Schneider J, Wendisch VF (2010) Putrescine production by engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol 88(4):859–868

    PubMed  CAS  Google Scholar 

  • Schroder J, Jochmann N, Rodionov DA, Tauch A (2010) The Zur regulon of Corynebacterium glutamicum ATCC 13032. BMC Genomics 11:12

    PubMed  Google Scholar 

  • Schrumpf B, Eggeling L, Sahm H (1992) Isolation and prominent characteristics of an L-lysine hyperproducing strain of Corynebacterium glutamicum. Appl Microbiol Biotechnol 37:566–571

    CAS  Google Scholar 

  • Schultz C, Niebisch A, Gebel L, Bott M (2007) Glutamate production by Corynebacterium glutamicum: dependence on the oxoglutarate dehydrogenase inhibitor protein OdhI and protein kinase PknG. Appl Microbiol Biotechnol 76:691–700

    PubMed  CAS  Google Scholar 

  • Schultz C et al (2009) Genetic and biochemical analysis of the serine/threonine protein kinases PknA, PknB, PknG and PknL of Corynebacterium glutamicum: evidence for non-essentiality and for phosphorylation of OdhI and FtsZ by multiple kinases. Mol Microbiol 74:724–741

    PubMed  CAS  Google Scholar 

  • Seibold GM et al (2010) The transcriptional regulators RamA and RamB are involved in the regulation of glycogen synthesis in Corynebacterium glutamicum. Microbiology 156:1256–1263

    PubMed  CAS  Google Scholar 

  • Sharma CM, Vogel J (2009) Experimental approaches for the discovery and characterization of regulatory small RNA. Curr Opin Microbiol 12:536–546

    PubMed  CAS  Google Scholar 

  • Sharma CM et al (2010) The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464:250–255

    PubMed  CAS  Google Scholar 

  • Sindelar G, Wendisch VF (2007) Improving lysine production by Corynebacterium glutamicum through DNA microarray-based identification of novel target genes. Appl Microbiol Biotechnol 76:677–689

    PubMed  CAS  Google Scholar 

  • Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF (2005) Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production. Appl Environ Microbiol 71:5920–5928

    PubMed  CAS  Google Scholar 

  • Stock JB, Ninfa AJ, Stock AM (1989) Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev 53:450–490

    PubMed  CAS  Google Scholar 

  • Suzuki N, Watanabe K, Okibe N, Tsuchida Y, Inui M, Yukawa H (2009) Identification of new secreted proteins and secretion of heterologous amylase by C. glutamicum. Appl Microbiol Biotechnol 82:491–500

    PubMed  CAS  Google Scholar 

  • Takeno S, Ohnishi J, Komatsu T, Masaki T, Sen K, Ikeda M (2007) Anaerobic growth and potential for amino acid production by nitrate respiration in Corynebacterium glutamicum. Appl Microbiol Biotechnol 75:1173–1182

    PubMed  CAS  Google Scholar 

  • Takors R, Bathe B, Rieping M, Hans S, Kelle R, Huthmacher K (2007) Systems biology for industrial strains and fermentation processes–example: amino acids. J Biotechnol 129:181–190

    PubMed  CAS  Google Scholar 

  • Tanaka Y, Teramoto H, Inui M, Yukawa H (2008) Regulation of expression of general components of the phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS) by the global regulator SugR in Corynebacterium glutamicum. Appl Microbiol Biotechnol 78:309–318

    PubMed  CAS  Google Scholar 

  • Tastet C, Charmont S, Chevallet M, Luche S, Rabilloud T (2003) Structure-efficiency relationships of zwitterionic detergents as protein solubilizers in two-dimensional electrophoresis. Proteomics 3:111–121

    PubMed  CAS  Google Scholar 

  • Tateno T, Okada Y, Tsuchidate T, Tanaka T, Fukuda H, Kondo A (2009) Direct production of cadaverine from soluble starch using Corynebacterium glutamicum coexpressing alpha-amylase and lysine decarboxylase. Appl Microbiol Biotechnol 82:115–121

    PubMed  CAS  Google Scholar 

  • Tauch A (2008) Genomics of industrially and medically corynebacteria. In: Burkovski A (ed) Corynebacteria: genomics and molecular biology. Caister Academic, Wymondham, pp 7–32

    Google Scholar 

  • Tauch A et al (2005) Complete genome sequence and analysis of the multiresistant nosocomial pathogen Corynebacterium jeikeium K411, a lipid-requiring bacterium of the human skin flora. J Bacteriol 187:4671–4682

    PubMed  CAS  Google Scholar 

  • Tauch A et al (2008a) Ultrafast pyrosequencing of Corynebacterium kroppenstedtii DSM44385 revealed insights into the physiology of a lipophilic corynebacterium that lacks mycolic acids. J Biotechnol 136:22–30

    PubMed  CAS  Google Scholar 

  • Tauch A et al (2008b) The lifestyle of Corynebacterium urealyticum derived from its complete genome sequence established by pyrosequencing. J Biotechnol 136:11–21

    PubMed  CAS  Google Scholar 

  • Taylor CF et al (2007) The minimum information about a proteomics experiment (MIAPE). Nat Biotechnol 25:887–893

    PubMed  CAS  Google Scholar 

  • Teramoto H, Shirai T, Inui M, Yukawa H (2008) Identification of a gene encoding a transporter essential for utilization of C4 dicarboxylates in Corynebacterium glutamicum. Appl Environ Microbiol 74:5290–5296

    PubMed  CAS  Google Scholar 

  • Teramoto H, Inui M, Yukawa H (2009) Regulation of expression of genes involved in quinate and shikimate utilization in Corynebacterium glutamicum. Appl Environ Microbiol 75:3461–3468

    PubMed  CAS  Google Scholar 

  • Thakur M, Chakraborti PK (2006) GTPase activity of mycobacterial FtsZ is impaired due to its transphosphorylation by the eukaryotic-type Ser/Thr kinase, PknA. J Biol Chem 281:40107–40113

    PubMed  CAS  Google Scholar 

  • Thomassen GO, Rowe AD, Lagesen K, Lindvall JM, Rognes T (2009) Custom design and analysis of high-density oligonucleotide bacterial tiling microarrays. PLoS One 4:e5943

    PubMed  Google Scholar 

  • Timms JF, Cramer R (2008) Difference gel electrophoresis. Proteomics 8:4886–4897

    PubMed  CAS  Google Scholar 

  • Tjaden B, Saxena RM, Stolyar S, Haynor DR, Kolker E, Rosenow C (2002) Transcriptome analysis of Escherichia coli using high-density oligonucleotide probe arrays. Nucleic Acids Res 30:3732–3738

    PubMed  CAS  Google Scholar 

  • Toyoda K, Teramoto H, Inui M, Yukawa H (2008) Expression of the gapA gene encoding glyceraldehyde-3-phosphate dehydrogenase of Corynebacterium glutamicum is regulated by the global regulator SugR. Appl Microbiol Biotechnol 81:291–301

    PubMed  CAS  Google Scholar 

  • Toyoda K, Teramoto H, Inui M, Yukawa H (2009a) Involvement of the LuxR-type transcriptional regulator RamA in regulation of expression of the gapA gene, encoding glyceraldehyde-3-phosphate dehydrogenase of Corynebacterium glutamicum. J Bacteriol 191:968–977

    PubMed  CAS  Google Scholar 

  • Toyoda K, Teramoto H, Inui M, Yukawa H (2009b) The ldhA gene, encoding fermentative L-lactate dehydrogenase of Corynebacterium glutamicum, is under the control of positive feedback regulation mediated by LldR. J Bacteriol 191:4251–4258

    PubMed  CAS  Google Scholar 

  • Toyoda K, Teramoto H, Inui M, Yukawa H (2009c) Molecular mechanism of SugR-mediated sugar-dependent expression of the ldhA gene encoding l-lactate dehydrogenase in Corynebacterium glutamicum. Appl Microbiol Biotechnol 83:315–327

    PubMed  CAS  Google Scholar 

  • Trost E et al (2010) Complete genome sequence and lifestyle of black-pigmented Corynebacterium aurimucosum ATCC 700975 (formerly C. nigricans CN-1) isolated from a vaginal swab of a woman with spontaneous abortion. BMC Genomics 11:91

    PubMed  Google Scholar 

  • Unlu M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077

    PubMed  CAS  Google Scholar 

  • van Ooyen J, Emer D, Bussmann M, Bott M, Eikmanns BJ, Eggeling L (2011) Citrate synthase in Corynebacterium glutamicum is encoded by two gltA transcripts which are controlled by RamA, RamB, and GlxR. J Biotechnol 154(2–3):140–148

    PubMed  Google Scholar 

  • VanBogelen RA, Schiller EE, Thomas JD, Neidhardt FC (1999) Diagnosis of cellular states of microbial organisms using proteomics. Electrophoresis 20:2149–2159

    PubMed  CAS  Google Scholar 

  • Vasicova P, Abrhamova Z, Nesvera J, Patek M, Sahm H, Eikmanns B (1998) Integrative and autonomously replicating vectors for analysis of pormoters in Corynebacterium glutamicum. Biotechnol Tech 12:743–746

    CAS  Google Scholar 

  • Veit A, Rittmann D, Georgi T, Youn JW, Eikmanns BJ, Wendisch VF (2009) Pathway identification combining metabolic flux and functional genomics analyses: acetate and propionate activation by Corynebacterium glutamicum. J Biotechnol 140:75–83

    PubMed  CAS  Google Scholar 

  • Wada M, Hijikata N, Aoki R, Takesue N, Yokota A (2008) Enhanced valine production in Corynebacterium glutamicum with defective H + -ATPase and C-terminal truncated acetohydroxyacid synthase. Biosci Biotechnol Biochem 72:2959–2965

    PubMed  CAS  Google Scholar 

  • Washburn MP, Wolters D, Yates JR 3rd (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247

    PubMed  CAS  Google Scholar 

  • Watanabe K et al (2009) Scanning the Corynebacterium glutamicum R genome for high-efficiency secretion signal sequences. Microbiology 155:741–750

    PubMed  CAS  Google Scholar 

  • Waters LS, Storz G (2009) Regulatory RNAs in bacteria. Cell 136:615–628

    PubMed  CAS  Google Scholar 

  • Wendisch VF (2003) Genome-wide expression analysis in Corynebacterium glutamicum using DNA microarrays. J Biotechnol 104:273–285

    PubMed  CAS  Google Scholar 

  • Wendisch VF (2006) Genetic regulation of Corynebacterium glutamicum metabolism. J Microbiol Biotechnol 16:999

    CAS  Google Scholar 

  • Wendisch VF (2008) DNA microarray-based transcriptome analyis in C. glutamicum. In: Burkovski A (ed) Corynebacteria: genomics and molecular biology. Caister Academic, Wymondham, pp 33–54

    Google Scholar 

  • Wendisch VF, Bott M, Eikmanns BJ (2006a) Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Curr Opin Microbiol 9:268–274

    PubMed  CAS  Google Scholar 

  • Wendisch VF, Bott M, Kalinowski J, Oldiges M, Wiechert W (2006b) Emerging Corynebacterium glutamicum systems biology. J Biotechnol 124:74

    PubMed  CAS  Google Scholar 

  • Wennerhold J, Krug A, Bott M (2005) The AraC-type regulator RipA represses aconitase and other iron proteins from Corynebacterium under iron limitation and is itself repressed by DtxR. J Biol Chem 280:40500–40508

    PubMed  CAS  Google Scholar 

  • Yasuda K, Jojima T, Suda M, Okino S, Inui M, Yukawa H (2007) Analyses of the acetate-producing pathways in Corynebacterium glutamicum under oxygen-deprived conditions. Appl Microbiol Biotechnol 77:853–860

    PubMed  CAS  Google Scholar 

  • Yates JR, Ruse CI, Nakorchevsky A (2009) Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng 11:49–79

    PubMed  CAS  Google Scholar 

  • Youn JW, Jolkver E, Kramer R, Marin K, Wendisch VF (2008) Identification and characterization of the dicarboxylate uptake system DccT in Corynebacterium glutamicum. J Bacteriol 190:6458–6466

    PubMed  CAS  Google Scholar 

  • Youn JW, Jolkver E, Kramer R, Marin K, Wendisch VF (2009) Characterization of the dicarboxylate transporter DctA in Corynebacterium glutamicum. J Bacteriol 191:5480–5488

    PubMed  CAS  Google Scholar 

  • Yukawa H, Inui M, Vertès AA (2007a) Genomes and genome-level engineering of amino acid-producing bacteria. In: Wendisch VF (ed) Amino acid biosynthesis – pathways, regulation and metabolic engineering. Springer, Heidelberg, Germany

    Google Scholar 

  • Yukawa H et al (2007b) Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology 153:1042–1058

    PubMed  CAS  Google Scholar 

  • Zemanova M, Kaderabkova P, Patek M, Knoppova M, Silar R, Nesvera J (2008) Chromosomally encoded small antisense RNA in Corynebacterium glutamicum. FEMS Microbiol Lett 279:195–201

    PubMed  CAS  Google Scholar 

  • Zhang J et al (2009) Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli. Mol Cell Proteomics 8:215–225

    PubMed  CAS  Google Scholar 

  • Zhao KX, Huang Y, Chen X, Wang NX, Liu SJ (2010) PcaO positively regulates pcaHG of the beta-ketoadipate pathway in Corynebacterium glutamicum. J Bacteriol 192:1565–1572

    PubMed  CAS  Google Scholar 

  • Zhu H, Bilgin M, Snyder M (2003) Proteomics. Annu Rev Biochem 72:783–812

    PubMed  CAS  Google Scholar 

  • Zimmer DP et al (2000) Nitrogen regulatory protein C-controlled genes of Escherichia coli: scavenging as a defense against nitrogen limitation. Proc Natl Acad Sci USA 97:14674–14679

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Kirsten Bräker (Forschungszentrum Juelich GmbH) for providing Fig. 1 and Nadine Dobler (Forschungszentrum Juelich GmbH) and Alexander Schliep (Rutgers State University of New Jersey) for the help with C. glutamicum tiling arrays. Part of the work in the Wendisch laboratory was supported through grants WE 23020/2-1 (DFG, ESF), 0315589 G (BMBF), and ERA-IB (22009508).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker F. Wendisch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wendisch, V.F., Polen, T. (2013). Transcriptome/Proteome Analysis of Corynebacterium glutamicum . In: Yukawa, H., Inui, M. (eds) Corynebacterium glutamicum. Microbiology Monographs, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29857-8_6

Download citation

Publish with us

Policies and ethics