Skip to main content

Genome Engineering of Corynebacterium glutamicum

  • Chapter
  • First Online:
Corynebacterium glutamicum

Part of the book series: Microbiology Monographs ((MICROMONO,volume 23))

Abstract

As a direct consequence of the recent advances in DNA sequencing technologies, complete genome sequences of more than 1,200 bacterial species have already been deciphered and they form an important resource for understanding the diversity of bacterial metabolic systems. Manipulation of bacterial genome sequences by integration, replacement, and disruption of individual genes has, in parallel, become a powerful strategy to improve bacterial traits. Regarding Corynebacterium glutamicum, whole genome sequences of two strains, namely R (3,314,179 bp) and ATCC 13032 (3,309,401 bp or 3,282,708 bp), have been determined and strain reconstruction studies initiated. Several techniques for genome-wide genetic manipulations using transposons, DNA recombinase, and homologous recombination reactions have been developed. These advances are particularly important because C. glutamicum has a long history of applications for the production for various commodity and fine chemicals. Armed with the microbe’s complete sequence, improvement and tailoring of its properties using genome engineering techniques continue to help facilitate the identification of metabolic bottlenecks and, consequently, their resolution. This in turn enhances the intrinsic characteristics of this bacterium as an industrial workhorse. In this chapter, recently developed techniques that enable to manipulate the C. glutamicum genome are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert H, Dale EC, Lee E, Ow DW (1995) Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J 7:649–659

    Article  PubMed  CAS  Google Scholar 

  • Ankri S, Reyes O, Leblon G (1996a) Electrotransformation of highly DNA-restrictive corynebacteria with synthetic DNA. Plasmid 35:62–66

    Article  PubMed  CAS  Google Scholar 

  • Ankri S, Reyes O, Leblon G (1996b) Improved electro-transformation of highly DNA-restrictive corynebacteria with DNA extracted from starved Escherichia coli. FEMS Microbiol Lett 140:247–251

    Article  PubMed  CAS  Google Scholar 

  • Ara K, Ozaki K, Nakamura K, Yamane K, Sekiguchi J, Ogasawara N (2007) Bacillus minimum genome factory: effective utilization of microbial genome information. Biotechnol Appl Biochem 46:169–178

    Article  PubMed  CAS  Google Scholar 

  • Araki K, Araki M, Yamamura K (1997) Targeted integration of DNA using mutant lox sites in embryonic stem cells. Nucleic Acids Res 25:868–872

    Article  PubMed  CAS  Google Scholar 

  • Austin S, Ziese M, Sternberg N (1981) A novel role for site-specific recombination in maintenance of bacterial replicons. Cell 25:729–736

    Article  PubMed  CAS  Google Scholar 

  • Bethke B, Sauer B (1997) Segmental genomic replacement by Cre-mediated recombination: genotoxic stress activation of the p53 promoter in single-copy transformants. Nucleic Acids Res 25:2828–2834

    Article  PubMed  CAS  Google Scholar 

  • Bonamy C, Guyonvarch A, Reyes O, David F, Leblon G (1990) Interspecies electro-transformation in Corynebacteria. FEMS Microbiol Lett 54:263–269

    Article  PubMed  CAS  Google Scholar 

  • Bonamy C, Labarre J, Reyes O, Leblon G (1994) Identification of IS1206, a Corynebacterium glutamicum IS3-related insertion sequence and phylogenetic analysis. Mol Microbiol 14:571–581

    Article  PubMed  CAS  Google Scholar 

  • Broach JR, Guarascio VR, Jayaram M (1982) Recombination within the yeast plasmid 2mu circle is site-specific. Cell 29:227–234

    Article  PubMed  CAS  Google Scholar 

  • Casjens S (2003) Prophages and bacterial genomics: what have we learned so far? Mol Microbiol 49:277–300

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Narendra U, Iype LE, Cox MM, Rice PA (2000) Crystal structure of a Flp recombinase-Holliday junction complex: assembly of an active oligomer by helix swapping. Mol Cell 6:885–897

    PubMed  CAS  Google Scholar 

  • Dean D (1981) A plasmid cloning vector for the direct selection of strains carrying recombinant plasmids. Gene 15:99–102

    Article  PubMed  CAS  Google Scholar 

  • Derbise A, Lesic B, Dacheux D, Ghigo JM, Carniel E (2003) A rapid and simple method for inactivating chromosomal genes in Yersinia. FEMS Immunol Med Microbiol 38:113–116

    Article  PubMed  CAS  Google Scholar 

  • Fukiya S, Mizoguchi H, Mori H (2004) An improved method for deleting large regions of Escherichia coli K-12 chromosome using a combination of Cre/loxP and lambda Red. FEMS Microbiol Lett 234:325–331

    PubMed  CAS  Google Scholar 

  • Gay P, Le Coq D, Steinmetz M, Berkelman T, Kado CI (1985) Positive selection procedure for entrapment of insertion sequence elements in gram-negative bacteria. J Bacteriol 164:918–921

    PubMed  CAS  Google Scholar 

  • Goryshin IY, Jendrisak J, Hoffman LM, Meis R, Reznikoff WS (2000) Insertional transposon mutagenesis by electroporation of released Tn5 transposition complexes. Nat Biotechnol 18:97–100

    Article  PubMed  CAS  Google Scholar 

  • Goryshin IY, Naumann TA, Apodaca J, Reznikoff WS (2003) Chromosomal deletion formation system based on Tn5 double transposition: use for making minimal genomes and essential gene analysis. Genome Res 13:644–653

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto M, Ichimura T, Mizoguchi H, Tanaka K, Fujimitsu K, Keyamura K, Ote T, Yamakawa T, Yamazaki Y, Mori H, Katayama T, Kato J (2005) Cell size and nucleoid organization of engineered Escherichia coli cells with a reduced genome. Mol Microbiol 55:137–149

    Article  PubMed  CAS  Google Scholar 

  • Hermann T (2003) Industrial production of amino acids by coryneform bacteria. J Biotechnol 104:155–172

    Article  PubMed  CAS  Google Scholar 

  • Hoess RH, Abremski K (1984) Interaction of the bacteriophage P1 recombinase Cre with the recombining site loxP. Proc Natl Acad Sci USA 81:1026–1029

    Article  PubMed  CAS  Google Scholar 

  • Hoess RH, Ziese M, Sternberg N (1982) P1 site-specific recombination: nucleotide sequence of the recombining sites. Proc Natl Acad Sci USA 79:3398–3402

    Article  PubMed  CAS  Google Scholar 

  • Hoffman LM, Jendrisak JJ, Meis RJ, Goryshin IY, Reznikof SW (2000) Transposome insertional mutagenesis and direct sequencing of microbial genomes. Genetica 108:19–24

    Article  PubMed  CAS  Google Scholar 

  • Horton RM (1995) PCR-mediated recombination and mutagenesis. SOEing together tailor-made genes. Mol Biotechnol 3:93–99

    Article  PubMed  CAS  Google Scholar 

  • Ikeda M, Katsumata R (1998) A novel system with positive selection for the chromosomal integration of replicative plasmid DNA in Corynebacterium glutamicum. Microbiology 144:1863–1868

    Article  PubMed  CAS  Google Scholar 

  • Ikeda M, Nakagawa S (2003) The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62:99–109

    Article  PubMed  CAS  Google Scholar 

  • Inui M, Kawaguchi H, Murakami S, Vertès AA, Yukawa H (2004) Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions. J Mol Microbiol Biotechnol 8:243–254

    Article  PubMed  Google Scholar 

  • Inui M, Tsuge Y, Suzuki N, Vertès AA, Yukawa H (2005) Isolation and characterization of a native composite transposon, Tn14751, carrying 17.4 kilobases of Corynebacterium glutamicum chromosomal DNA. Appl Environ Microbiol 71:407–416

    Article  PubMed  CAS  Google Scholar 

  • Isberg RR, Lazaar AL, Syvanen M (1982) Regulation of Tn5 by the right-repeat proteins: control at the level of the transposition reaction? Cell 30:883–892

    Article  PubMed  CAS  Google Scholar 

  • Itaya M, Tsuge K, Koizumi M, Fujita K (2005) Combining two genomes in one cell: stable cloning of the Synechocystis PCC6803 genome in the Bacillus subtilis 168 genome. Proc Natl Acad Sci USA 102:15971–15976

    Article  PubMed  CAS  Google Scholar 

  • Jäger W, Schäfer A, Pühler A, Labes G, Wohlleben W (1992) Expression of the Bacillus subtilis sacB gene leads to sucrose sensitivity in the gram-positive bacterium Corynebacterium glutamicum but not in Streptomyces lividans. J Bacteriol 174:5462–5465

    PubMed  Google Scholar 

  • Jäger W, Schäfer A, Kalinowski J, Pühler A (1995) Isolation of insertion elements from gram-positive Brevibacterium, Corynebacterium and Rhodococcus strains using the Bacillus subtilis sacB gene as a positive selection marker. FEMS Microbiol Lett 126:1–6

    Article  PubMed  Google Scholar 

  • Jang KH, Chambers PJ, Britz ML (1996) Analysis of nucleotide methylation in DNA from Corynebacterium glutamicum and related species. FEMS Microbiol Lett 136:309–315

    Article  PubMed  CAS  Google Scholar 

  • Jayaram M (1985) Two-micrometer circle site-specific recombination: the minimal substrate and the possible role of flanking sequences. Proc Natl Acad Sci USA 82:5875–5879

    Article  PubMed  CAS  Google Scholar 

  • Johnson RC, Reznikoff WS (1984) Role of the IS50 R proteins in the promotion and control of Tn5 transposition. J Mol Biol 177:645–661

    Article  PubMed  CAS  Google Scholar 

  • Johnson RC, Yin JC, Reznikoff WS (1982) Control of Tn5 transposition in Escherichia coli is mediated by protein from the right repeat. Cell 30:873–882

    Article  PubMed  CAS  Google Scholar 

  • Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Pühler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25

    Article  PubMed  CAS  Google Scholar 

  • Knight TF (2003) Idempotent vector design for standard assembly of Biobricks. http://hdl.handle.net/1721.1/21168, website DSpace

  • Kolisnychenko V, Plunkett G 3rd, Herring CD, Feher T, Posfai J, Blattner FR, Posfai G (2002) Engineering a reduced Escherichia coli genome. Genome Res 12:640–647

    Article  PubMed  CAS  Google Scholar 

  • Kuhn R, Torres RM (2002) Cre/loxP recombination system and gene targeting. Methods Mol Biol 180:175–204

    PubMed  CAS  Google Scholar 

  • Kumagai H (2000) Microbial production of amino acids in Japan. Adv Biochem Eng Biotechnol 69:71–85

    PubMed  CAS  Google Scholar 

  • Lee L, Sadowski PD (2001) Directional resolution of synthetic holliday structures by the Cre recombinase. J Biol Chem 276:31092–31098

    Article  PubMed  CAS  Google Scholar 

  • Lee G, Saito I (1998) Role of nucleotide sequences of loxP spacer region in Cre-mediated recombination. Gene 216:55–65

    Article  PubMed  CAS  Google Scholar 

  • Liebl W, Bayerl A, Schein B, Stillner U, Schleifer KH (1989) High efficiency electroporation of intact Corynebacterium glutamicum cells. FEMS Microbiol Lett 53:299–303

    Article  PubMed  CAS  Google Scholar 

  • Liu YG, Mitsukawa N, Oosumi T, Whittier RF (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8:457–463

    Article  PubMed  CAS  Google Scholar 

  • Mahillon J, Chandler M (1998) Insertion sequences. Microbiol Mol Biol Rev 62:725–774

    PubMed  CAS  Google Scholar 

  • Malumbres M, Mateos LM, Martin JF (1995) Microorganisms for amino acid production: Escherichia coli and corynebacteria. VCH Publishers, New York

    Google Scholar 

  • Mira A, Ochman H, Moran NA (2001) Deletional bias and the evolution of bacterial genomes. Trends Genet 17:589–596

    Article  PubMed  CAS  Google Scholar 

  • Moreau S, Leret V, Le Marrec C, Varangot H, Ayache M, Bonnassie S, Blanco C, Trautwetter A (1995) Prophage distribution in coryneform bacteria. Res Microbiol 146:493–505

    Article  PubMed  CAS  Google Scholar 

  • Moreau S, Blanco C, Trautwetter A (1999a) Site-specific integration of corynephage phi16: construction of an integration vector. Microbiology 145:539–548

    Article  PubMed  CAS  Google Scholar 

  • Moreau S, Le Marrec C, Blanco C, Trautwetter A (1999b) Analysis of the integration functions of phi304L: an integrase module among corynephages. Virology 255:150–159

    Article  PubMed  CAS  Google Scholar 

  • Murphy KC (1998) Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli. J Bacteriol 180:2063–2071

    PubMed  CAS  Google Scholar 

  • Nakamura J, Kanno S, Kimura E, Matsui K, Nakamatsu T, Wachi M (2006) Temperature-sensitive cloning vector for Corynebacterium glutamicum. Plasmid 56:179–186

    Article  PubMed  CAS  Google Scholar 

  • Nakano M, Odaka K, Ishimura M, Kondo S, Tachikawa N, Chiba J, Kanegae Y, Saito I (2001) Efficient gene activation in cultured mammalian cells mediated by FLP recombinase-expressing recombinant adenovirus. Nucleic Acids Res 29:E40

    Article  PubMed  CAS  Google Scholar 

  • Ochman H, Jones IB (2000) Evolutionary dynamics of full genome content in Escherichia coli. EMBO J 19:6637–6643

    Article  PubMed  CAS  Google Scholar 

  • Okibe N, Suzuki N, Inui M, Yukawa H (2011) Efficient markerless gene replacement in Corynebacterium glutamicum using a new temperature-sensitive plasmid. J Microbiol Methods 85:155–163

    Article  PubMed  CAS  Google Scholar 

  • Posfai G, Kolisnychenko V, Bereczki Z, Blattner FR (1999) Markerless gene replacement in Escherichia coli stimulated by a double-strand break in the chromosome. Nucleic Acids Res 27:4409–4415

    Article  PubMed  CAS  Google Scholar 

  • Proteau G, Sidenberg D, Sadowski P (1986) The minimal duplex DNA sequence required for site-specific recombination promoted by the FLP protein of yeast in vitro. Nucleic Acids Res 14:4787–4802

    Article  PubMed  CAS  Google Scholar 

  • Reyes O, Guyonvarch A, Bonamy C, Salti V, David F, Leblon G (1991) ‘Integron’-bearing vectors: a method suitable for stable chromosomal integration in highly restrictive corynebacteria. Gene 107:61–68

    Article  PubMed  CAS  Google Scholar 

  • Russell CB, Dahlquist FW (1989) Exchange of chromosomal and plasmid alleles in Escherichia coli by selection for loss of a dominant antibiotic sensitivity marker. J Bacteriol 171:2614–2618

    PubMed  CAS  Google Scholar 

  • Schäfer A, Kalinowski J, Simon R, Seep-Feldhaus AH, Pühler A (1990) High-frequency conjugal plasmid transfer from gram-negative Escherichia coli to various gram-positive coryneform bacteria. J Bacteriol 172:1663–1666

    PubMed  Google Scholar 

  • Schäfer A, Kalinowski J, Pühler A (1994a) Increased fertility of Corynebacterium glutamicum recipients in intergeneric matings with Escherichia coli after stress exposure. Appl Environ Microbiol 60:756–759

    PubMed  Google Scholar 

  • Schäfer A, Schwarzer A, Kalinowski J, Pühler A (1994b) Cloning and characterization of a DNA region encoding a stress-sensitive restriction system from Corynebacterium glutamicum ATCC 13032 and analysis of its role in intergeneric conjugation with Escherichia coli. J Bacteriol 176:7309–7319

    PubMed  Google Scholar 

  • Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A (1994c) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73

    Article  PubMed  Google Scholar 

  • Schäfer A, Tauch A, Droste N, Pühler A, Kalinowski J (1997) The Corynebacterium glutamicum cglIM gene encoding a 5-cytosine methyltransferase enzyme confers a specific DNA methylation pattern in an McrBC-deficient Escherichia coli strain. Gene 203:95–101

    Article  PubMed  Google Scholar 

  • Schwarzer A, Pühler A (1991) Manipulation of Corynebacterium glutamicum by gene disruption and replacement. Biotechnology (N Y) 9:84–87

    Article  CAS  Google Scholar 

  • Seibler J, Bode J (1997) Double-reciprocal crossover mediated by FLP-recombinase: a concept and an assay. Biochemistry 36:1740–1747

    Article  PubMed  CAS  Google Scholar 

  • Senecoff JF, Bruckner RC, Cox MM (1985) The FLP recombinase of the yeast 2-micron plasmid: characterization of its recombination site. Proc Natl Acad Sci USA 82:7270–7274

    Article  PubMed  CAS  Google Scholar 

  • Steiniger-White M, Rayment I, Reznikoff WS (2004) Structure/function insights into Tn5 transposition. Curr Opin Struct Biol 14:50–57

    Article  PubMed  CAS  Google Scholar 

  • Suzuki N, Nonaka H, Tsuge Y, Inui M, Yukawa H (2005a) New multiple-deletion method for the Corynebacterium glutamicum genome, using a mutant lox sequence. Appl Environ Microbiol 71:8472–8480

    Article  PubMed  CAS  Google Scholar 

  • Suzuki N, Nonaka H, Tsuge Y, Okayama S, Inui M, Yukawa H (2005b) Multiple large segment deletion method for Corynebacterium glutamicum. Appl Microbiol Biotechnol 69:151–161

    Article  PubMed  CAS  Google Scholar 

  • Suzuki N, Okayama S, Nonaka H, Tsuge Y, Inui M, Yukawa H (2005c) Large-scale engineering of the Corynebacterium glutamicum genome. Appl Environ Microbiol 71:3369–3372

    Article  PubMed  CAS  Google Scholar 

  • Suzuki N, Tsuge Y, Inui M, Yukawa H (2005d) Cre/loxP-mediated deletion system for large genome rearrangements in Corynebacterium glutamicum. Appl Microbiol Biotechnol 67: 225–233

    Google Scholar 

  • Suzuki N, Okai N, Nonaka H, Tsuge Y, Inui M, Yukawa H (2006) High-throughput transposon mutagenesis of Corynebacterium glutamicum and construction of a single-gene disruptant mutant library. Appl Environ Microbiol 72:3750–3755

    Article  PubMed  CAS  Google Scholar 

  • Suzuki N, Inui M, Yukawa H (2007) Site-directed integration system using a combination of mutant lox sites for Corynebacterium glutamicum. Appl Microbiol Biotechnol 77:871–878

    Article  PubMed  CAS  Google Scholar 

  • Taniya T, Mitobe J, Nakayama S, Mingshan Q, Okuda K, Watanabe H (2003) Determination of the InvE binding site required for expression of IpaB of the Shigella sonnei virulence plasmid: involvement of a ParB boxA-like sequence. J Bacteriol 185:5158–5165

    Article  PubMed  CAS  Google Scholar 

  • Tauch A, Kassing F, Kalinowski J, Pühler A (1995) The erythromycin resistance gene of the Corynebacterium xerosis R-plasmid pTP10 also carrying chloramphenicol, kanamycin, and tetracycline resistances is capable of transposition in Corynebacterium glutamicum. Plasmid 33:168–179

    Article  PubMed  CAS  Google Scholar 

  • Tauch A, Zheng Z, Pühler A, Kalinowski J (1998) Corynebacterium striatum chloramphenicol resistance transposon Tn5564: genetic organization and transposition in Corynebacterium glutamicum. Plasmid 40:126–139

    Article  PubMed  CAS  Google Scholar 

  • Thatcher JW, Shaw JM, Dickinson WJ (1998) Marginal fitness contributions of nonessential genes in yeast. Proc Natl Acad Sci USA 95:253–257

    Article  PubMed  CAS  Google Scholar 

  • Trevors JT (1997) Evolution of bacterial genomes. Antonie Van Leeuwenhoek 71:265–270

    Article  PubMed  CAS  Google Scholar 

  • Tsuge Y, Ninomiya K, Suzuki N, Inui M, Yukawa H (2005) A new insertion sequence, IS14999, from Corynebacterium glutamicum. Microbiology 151:501–508

    Article  PubMed  CAS  Google Scholar 

  • Tsuge Y, Suzuki N, Inui M, Yukawa H (2007a) Random segment deletion based on IS31831 and Cre/loxP excision system in Corynebacterium glutamicum. Appl Microbiol Biotechnol 74:1333–1341

    Article  PubMed  CAS  Google Scholar 

  • Tsuge Y, Suzuki N, Ninomiya K, Inui M, Yukawa H (2007b) Isolation of a new insertion sequence, IS13655, and its application to Corynebacterium glutamicum genome mutagenesis. Biosci Biotechnol Biochem 71:1683–1690

    Article  PubMed  CAS  Google Scholar 

  • Uzzau S, Figueroa-Bossi N, Rubino S, Bossi L (2001) Epitope tagging of chromosomal genes in Salmonella. Proc Natl Acad Sci USA 98:15264–15269

    Article  PubMed  CAS  Google Scholar 

  • van der Rest ME, Lange C, Molenaar D (1999) A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biotechnol 52:541–545

    Article  PubMed  Google Scholar 

  • van Kessel JC, Hatfull GF (2007) Recombineering in Mycobacterium tuberculosis. Nat Methods 4:147–152

    Article  PubMed  Google Scholar 

  • Vertès AA, Hatakeyama M, Inui M, Kobayashi Y, Kurusu Y, Yukawa H (1993a) Replacement recombination in coryneform bacteria: high efficiency integration requirement for non-methylated plasmid DNA. Biosci Biotechnol Biochem 57:2036–2038

    Article  Google Scholar 

  • Vertès AA, Inui M, Kobayashi M, Kurusu Y, Yukawa H (1993b) Presence of mrr- and mcr-like restriction systems in coryneform bacteria. Res Microbiol 144:181–185

    Article  PubMed  Google Scholar 

  • Vertès AA, Asai Y, Inui M, Kobayashi M, Kurusu Y, Yukawa H (1994a) Transposon mutagenesis of coryneform bacteria. Mol Gen Genet 245:397–405

    Article  PubMed  Google Scholar 

  • Vertès AA, Inui M, Kobayashi M, Kurusu Y, Yukawa H (1994b) Isolation and characterization of IS31831, a transposable element from Corynebacterium glutamicum. Mol Microbiol 11:739–746

    Article  PubMed  Google Scholar 

  • Vertès AA, Inui M, Yukawa H (2005) Manipulating Corynebacteria, from genes to chromosomes. Appl Environ Microbiol 71:7633–7642

    Article  PubMed  Google Scholar 

  • Westers H, Dorenbos R, van Dijl JM, Kabel J, Flanagan T, Devine KM, Jude F, Seror SJ, Beekman AC, Darmon E, Eschevins C, de Jong A, Bron S, Kuipers OP, Albertini AM, Antelmann H, Hecker M, Zamboni N, Sauer U, Bruand C, Ehrlich DS, Alonso JC, Salas M, Quax WJ (2003) Genome engineering reveals large dispensable regions in Bacillus subtilis. Mol Biol Evol 20:2076–2090

    Article  PubMed  CAS  Google Scholar 

  • Yu D, Ellis HM, Lee EC, Jenkins NA, Copeland NG, Court DL (2000) An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci USA 97:5978–5983

    Article  PubMed  CAS  Google Scholar 

  • Yu BJ, Sung BH, Koob MD, Lee CH, Lee JH, Lee WS, Kim MS, Kim SC (2002) Minimization of the Escherichia coli genome using a Tn5-targeted Cre/loxP excision system. Nat Biotechnol 20:1018–1023

    Article  PubMed  CAS  Google Scholar 

  • Yukawa H, Inui M, Vertès AA (2006) Genomes and genome-level engineering of amino acid-producing bacteria. In: Wendisch VF (ed) Amino acid biosynthesis, vol 5, Microbiology monographs. Springer, Berlin, pp 350–401

    Google Scholar 

  • Yukawa H, Omumasaba CA, Nonaka H, Kos P, Okai N, Suzuki N, Suda M, Tsuge Y, Watanabe J, Ikeda Y, Vertès AA, Inui M (2007) Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology 153:1042–1058

    Article  PubMed  CAS  Google Scholar 

  • Yuksel S, Hansen JN (2007) Transfer of nisin gene cluster from Lactococcus lactis ATCC 11454 into the chromosome of Bacillus subtilis 168. Appl Microbiol Biotechnol 74:640–649

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Dr. C. Omumasaba (internal) for the critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Inui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Suzuki, N., Inui, M. (2013). Genome Engineering of Corynebacterium glutamicum . In: Yukawa, H., Inui, M. (eds) Corynebacterium glutamicum. Microbiology Monographs, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29857-8_3

Download citation

Publish with us

Policies and ethics