Skip to main content

Promoters and Plasmid Vectors of Corynebacterium glutamicum

  • Chapter
  • First Online:

Part of the book series: Microbiology Monographs ((MICROMONO,volume 23))

Abstract

The promoters and plasmids of Corynebacterium glutamicum can be viewed as subjects for genetic examination, tools for studies of gene expression, and a means for the improvement of industrial strains. Various classes of C. glutamicum promoters, their specific functions in gene expression control, and methods for their analysis are described in this review. C. glutamicum promoters recognized by RNA polymerase with a specific sigma factor (SigA, SigB, SigH, or SigM) were localized and their consensus sequences determined. Experimental localization of transcriptional start points revealed complex gene expression regulation features, such as overlapping multiple promoters. An overview of native plasmids used for the construction of C. glutamicum vectors and examples of vectors applied in genetic analysis are provided. In addition to basic cloning vectors, special-purpose vectors are described. This includes promoter-probe vectors for the analysis of promoter activity profiles and various regulatory mechanism and expression vectors, which carry promoters as efficient signals for gene expression.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adham SA, Rodriguez S, Ramos A, Santamaria RI, Gil JA (2003) Improved vectors for transcriptional/translational signal screening in corynebacteria using the melC operon from Streptomyces glaucescens as reporter. Arch Microbiol 180:53–59

    PubMed  CAS  Google Scholar 

  • Amador E, Martin JF, Castro JM (2000) A Brevibacterium lactofermentum 16S rRNA gene used as target site for homologous recombination. FEMS Microbiol Lett 185:199–204

    PubMed  CAS  Google Scholar 

  • Arndt A, Eikmanns BJ (2007) The alcohol dehydrogenase gene adhA in Corynebacterium glutamicum is subject to carbon catabolite repression. J Bacteriol 189:7408–7416

    PubMed  CAS  Google Scholar 

  • Asakura Y, Kimura E, Usuda Y, Kawahara Y, Matsui K, Osumi T, Nakamatsu T (2007) Altered metabolic flux due to deletion of odhA causes L-glutamate overproduction in Corynebacterium glutamicum. Appl Environ Microbiol 73:1308–1319

    PubMed  CAS  Google Scholar 

  • Auchter M, Arndt A, Eikmanns BJ (2009) Dual transcriptional control of the acetaldehyde dehydrogenase gene ald of Corynebacterium glutamicum by RamA and RamB. J Biotechnol 140:84–91

    PubMed  CAS  Google Scholar 

  • Balwierz PJ, Carninci P, Daub CO, Kawai J, Hayashizaki Y, Van Belle W, Beisel C et al (2009) Methods for analyzing deep sequencing expression data: constructing the human and mouse promoterome with deepCAGE data. Genome Biol 10:R79

    PubMed  Google Scholar 

  • Barák I, Koptides M, Jucovič M, Šišova M, Timko J (1990) Construction of a promoter-probe shuttle vector for Escherichia coli and brevibacteria. Gene 95:133–135

    PubMed  Google Scholar 

  • Bardonnet N, Blanco C (1991) Improved vectors for transcriptional signal screening in corynebacteria. FEMS Microbiol Lett 68:97–102

    PubMed  CAS  Google Scholar 

  • Barreiro C, González-Lavado E, Pátek M, Martín JF (2004) Transcriptional analysis of the groES-groEL1, groEL2, and dnaK genes in Corynebacterium glutamicum: characterization of heat shock-induced promoters. J Bacteriol 186:4813–4817

    PubMed  CAS  Google Scholar 

  • Barreiro C, Nakunst D, Huser AT, de Paz HD, Kalinowski J, Martin JF (2009) Microarray studies reveal a ‘differential response’ to moderate or severe heat shock of the HrcA- and HspR-dependent systems in Corynebacterium glutamicum. Microbiology 155:359–372

    PubMed  CAS  Google Scholar 

  • Barriuso-Iglesias M, Barreiro C, Flechoso F, Martín JF (2006) Transcriptional analysis of the F0F1 ATPase operon of Corynebacterium glutamicum ATCC 13032 reveals strong induction by alkaline pH. Microbiology 152:11–21

    PubMed  CAS  Google Scholar 

  • Bashyam MD, Tyagi AK (1998) Identification and analysis of “extended -10” promoters from mycobacteria. J Bacteriol 180:2568–2573

    PubMed  CAS  Google Scholar 

  • Bernard KA, Wiebe D, Burdz T, Reimer A, Ng B, Singh C, Schindle S, Pacheco AL (2010) Assignment of Brevibacterium stationis (ZoBell and Upham 1994) Breed 1953 to the genus Corynebacterium as Corynebacterium stationis comb. nov. and emended description of the genus Corynebacterium to include isoates which can alkalinize citrate. Int J Syst Evol Microbiol 60:874–879

    PubMed  CAS  Google Scholar 

  • Brinkrolf K, Brune I, Tauch A (2007) The transcriptional regulatory network of the amino acid producer Corynebacterium glutamicum. J Biotechnol 129:191–211

    PubMed  CAS  Google Scholar 

  • Brinkrolf K, Plöger S, Solle S, Brune I, Nentwich SS, Hüser AT, Kalinowski J et al (2008) The LacI/GalR family transcriptional regulator UriR negatively controls uridine utilization of Corynebacterium glutamicum by binding to catabolite-responsive element (cre)-like sequences. Microbiology 154:1068–1081

    PubMed  CAS  Google Scholar 

  • Brocker M, Schaffer S, Mack C, Bott M (2009) Citrate utilization by Corynebacterium glutamicum is controlled by the CitAB two-component system through positive regulation of the citrate transport genes citH and tctCBA. J Bacteriol 191:3869–3880

    PubMed  CAS  Google Scholar 

  • Brockmann-Gretza O, Kalinowski J (2006) Global gene expression during stringent response in Corynebacterium glutamicum in presence and absence of the rel gene encoding (p)ppGpp synthase. BMC Genomics 7:230

    PubMed  Google Scholar 

  • Brune I, Jochmann N, Brinkrolf K, Hüser AT, Gerstmeir R, Eikmanns BJ, Kalinowski J et al (2007) The IclR-type transcriptional repressor LtbR regulates the expression of leucine and tryptophan biosynthesis genes in the amino acid producer Corynebacterium glutamicum. J Bacteriol 189:2720–2733

    PubMed  CAS  Google Scholar 

  • Burr T, Mitchell J, Kolb A, Minchin S, Busby S (2000) DNA sequence elements located immediately upstream of the -10 hexamer in Escherichia coli promoters: a systematic study. Nucleic Acids Res 28:1864–1870

    PubMed  CAS  Google Scholar 

  • Cadenas RF, Martin JF, Gil JA (1991) Construction and characterization of promoter-probe vectors for Corynebacteria using the kanamycin-resistance reporter gene. Gene 98:117–121

    PubMed  CAS  Google Scholar 

  • Cadenas RF, Fernandez-Gonzalez C, Martin JF, Gil JA (1996) Construction of new cloning vectors for Brevibacterium lactofermentum. FEMS Microbiol Lett 137:63–68

    PubMed  CAS  Google Scholar 

  • Cramer A, Eikmanns BJ (2007) RamA, the transcriptional regulator of acetate metabolism in Corynebacterium glutamicum, is subject to negative autoregulation. J Mol Microbiol Biotechnol 12:51–59

    PubMed  CAS  Google Scholar 

  • Cramer A, Auchter M, Frunzke J, Bott M, Eikmanns BJ (2007) RamB, the transcriptional regulator of acetate metabolism in Corynebacterium glutamicum, is subject to regulation by RamA and RamB. J Bacteriol 189:1145–1149

    PubMed  CAS  Google Scholar 

  • Cremer J, Eggeling L, Sahm H (1990) Cloning the dapAdapB cluster of the lysine-secreting bacterium Corynebacterium glutamicum. Mol Gen Genet 220:478–480

    CAS  Google Scholar 

  • Dainese E, Rodrigue S, Delogu G, Provvedi R, Laflamme L, Brzezinski R, Fadda G et al (2006) Posttranslational regulation of Mycobacterium tuberculosis extracytoplasmic-function sigma factor σL and roles in virulence and in global regulation of gene expression. Infect Immun 74:2457–2461

    PubMed  CAS  Google Scholar 

  • Dusch N, Pühler A, Kalinowski J (1999) Expression of the Corynebacterium glutamicum panD gene encoding L-aspartate-alpha-decarboxylase leads to pantothenate overproduction in Escherichia coli. Appl Environ Microbiol 65:1530–1539

    PubMed  CAS  Google Scholar 

  • Eggeling L, Reyes O (2005) Experiments. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. CRC, Boca Raton, FL, pp 535–566

    Google Scholar 

  • Ehira S, Shirai T, Teramoto H, Inui M, Yukawa H (2008) Group 2 sigma factor SigB of Corynebacterium glutamicum positively regulates glucose metabolism under conditions of oxygen deprivation. Appl Environ Microbiol 74:5146–5152

    PubMed  CAS  Google Scholar 

  • Ehira S, Teramoto H, Inui M, Yukawa H (2009) Regulation of Corynebacterium glutamicum heat shock response by the extracytoplasmic-function sigma factor SigH and transcriptional regulators HspR and HrcA. J Bacteriol 191:2964–2972

    PubMed  CAS  Google Scholar 

  • Eikmanns BJ, Kleinertz E, Liebl W, Sahm H (1991a) A family of Corynebacterium glutamicum/Escherichia coli shuttle vectors for cloning, controlled gene expression, and promoter probing. Gene 102:93–98

    PubMed  CAS  Google Scholar 

  • Eikmanns BJ, Metzger M, Reinscheid D, Kircher M, Sahm H (1991b) Amplification of three threonine biosynthesis genes in Corynebacterium glutamicum and its influence on carbon flux in different strains. Appl Microbiol Biotechnol 34:617–622

    PubMed  CAS  Google Scholar 

  • Elišáková V, Pátek M, Holátko J, Nešvera J, Leyval D, Goergen JL, Delaunay S (2005) Feedback-resistant acetohydroxy acid synthase increases valine production in Corynebacterium glutamicum. Appl Environ Microbiol 71:207–213

    PubMed  Google Scholar 

  • Engels S, Schweitzer JE, Ludwig C, Bott M, Schaffer S (2004) clpC and clpP1P2 gene expression in Corynebacterium glutamicum is controlled by a regulatory network involving the transcriptional regulators ClgR and HspR as well as the ECF sigma factor σH. Mol Microbiol 52:285–302

    PubMed  CAS  Google Scholar 

  • Engels V, Georgi T, Wendisch VF (2008) ScrB (Cg2927) is a sucrose-6-phosphate hydrolase essential for sucrose utilization by Corynebacterium glutamicum. FEMS Microbiol Lett 289:80–89

    PubMed  CAS  Google Scholar 

  • Fernandez-Gonzalez C, Cadenas RF, Noirot-Gros MF, Martin JF, Gil JA (1994) Characterization of a region of plasmid pBL1 of Brevibacterium lactofermentum involved in replication via the rolling circle model. J Bacteriol 176:3154–3161

    PubMed  CAS  Google Scholar 

  • Frunzke J, Engels V, Hasenbein S, Gatgens C, Bott M (2008) Co-ordinated regulation of gluconate catabolism and glucose uptake in Corynebacterium glutamicum by two functionally equivalent transcriptional regulators, GntR1 and GntR2. Mol Microbiol 67:305–322

    PubMed  CAS  Google Scholar 

  • Gaigalat L, Schlüter JP, Hartmann M, Mormann S, Tauch A, Pühler A, Kalinowski J (2007) The DeoR-type transcriptional regulator SugR acts as a repressor for genes encoding the phosphoenolpyruvate:sugar phosphotransferase system (PTS) in Corynebacterium glutamicum. BMC Mol Biol 8:104

    PubMed  Google Scholar 

  • Georgi T, Engels V, Wendisch VF (2007) Regulation of L-lactate utilization by the FadR-type regulator LldR of Corynebacterium glutamicum. J Bacteriol 190(3):963–971

    PubMed  Google Scholar 

  • Gerstmeir R, Cramer A, Dangel P, Schaffer S, Eikmanns BJ (2004) RamB, a novel transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J Bacteriol 186:2798–2809

    PubMed  CAS  Google Scholar 

  • Goyal D, Wachi M, Kijima N, Kobayashi M, Yukawa H, Nagai K (1996) A cryptic plasmid pBL1 from Brevibacterium lactofermentum causes growth inhibition and filamentation in Escherichia coli. Plasmid 36:62–66

    PubMed  CAS  Google Scholar 

  • Gruber TM, Gross CA (2003) Multiple sigma subunits and the partitioning of bacterial transcription space. Annu Rev Microbiol 57:441–466

    PubMed  CAS  Google Scholar 

  • Guillouet S, Rodal AA, An G, Lessard PA, Sinskey AJ (1999) Expression of the Escherichia coli catabolic threonine dehydratase in Corynebacterium glutamicum and its effect on isoleucine production. Appl Environ Microbiol 65:3100–3107

    PubMed  CAS  Google Scholar 

  • Halgasova N, Bukovska G, Timko J, Kormanec J (2001) Cloning and transcriptional characterization of two sigma factor genes, sigA and sigB, from Brevibacterium flavum. Curr Microbiol 43:249–254

    PubMed  CAS  Google Scholar 

  • Halgasova N, Bukovska G, Ugorcakova J, Timko J, Kormanec J (2002) The Brevibacterium flavum sigma factor SigB has a role in the environmental stress response. FEMS Microbiol Lett 216:77–84

    PubMed  CAS  Google Scholar 

  • Han KS, Archer JA, Sinskey AJ (1990) The molecular structure of the Corynebacterium glutamicum threonine synthase gene. Mol Microbiol 4:1693–1702

    PubMed  CAS  Google Scholar 

  • Han SO, Inui M, Yukawa H (2007) Expression of Corynebacterium glutamicum glycolytic genes varies with carbon source and growth phase. Microbiology 153:2190–2202

    PubMed  CAS  Google Scholar 

  • Han SO, Inui M, Yukawa H (2008) Effect of carbon source availability and growth phase on expression of Corynebacterium glutamicum genes involved in the tricarboxylic acid cycle and glyoxylate bypass. Microbiology 154:3073–3083

    PubMed  CAS  Google Scholar 

  • Hänssler E, Müller T, Palumbo K, Patek M, Brocker M, Krämer R, Burkovski A (2009) A game with many players: control of gdh transcription in Corynebacterium glutamicum. J Biotechnol 142:114–122

    PubMed  Google Scholar 

  • Holátko J, Elišáková V, Prouza M, Sobotka M, Nešvera J, Pátek M (2009) Metabolic engineering of the L-valine biosynthesis pathway in Corynebacterium glutamicum using promoter activity modulation. J Biotechnol 139:203–210

    PubMed  Google Scholar 

  • Ikeda M, Katsumata R (1998) A novel system with positive selection for the chromosomal integration of replicative plasmid DNA in Corynebacterium glutamicum. Microbiology 144:1863–1868

    PubMed  CAS  Google Scholar 

  • Ikeda M, Nakagawa S (2003) The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62:99–109

    PubMed  CAS  Google Scholar 

  • Inui M, Suda M, Okino S, Nonaka H, Puskas LG, Vertès AA, Yukawa H (2007) Transcriptional profiling of Corynebacterium glutamicum metabolism during organic acid production under oxygen deprivation conditions. Microbiology 153:2491–2504

    PubMed  CAS  Google Scholar 

  • Ishige T, Krause M, Bott M, Wendisch VF, Sahm H (2003) The phosphate starvation stimulon of Corynebacterium glutamicum determined by DNA microarray analyses. J Bacteriol 185:4519–4529

    PubMed  CAS  Google Scholar 

  • Ito H, Sato K, Enei H, Hirose Y (1990a) Improvement in microbial production of L-tyrosine by gene dosage effect of aroL gene encoding shikimate kinase. Agric Biol Chem 54:823–824

    PubMed  CAS  Google Scholar 

  • Ito H, Sato K, Matsui K, Sano K, Enei H, Hirose Y (1990b) Molecular breeding of a Brevibacterium lactofermentum L-phenylalanine producer using a cloned prephenate dehydratase gene. Appl Microbiol Biotechnol 33:190–195

    CAS  Google Scholar 

  • Jacques PE, Rodrigue S, Gaudreau L, Goulet J, Brzezinski R (2006) Detection of prokaryotic promoters from the genomic distribution of hexanucleotide pairs. BMC Bioinformatics 7:423

    PubMed  Google Scholar 

  • Jäger W, Schäfer A, Pühler A, Labes G, Wohlleben W (1992) Expression of the Bacillus subtilis sacB gene leads to sucrose sensitivity in the gram-positive bacterium Corynebacterium glutamicum but not in Streptomyces lividans. J Bacteriol 174:5462–5465

    PubMed  Google Scholar 

  • Jakob K, Satorhelyi P, Lange C, Wendisch VF, Silakowski B, Scherer S, Neuhaus K (2007) Gene expression analysis of Corynebacterium glutamicum subjected to long-term lactic acid adaptation. J Bacteriol 189:5582–5590

    PubMed  CAS  Google Scholar 

  • Jakoby M, Ngouoto-Nkili CE, Burkovski A (1999) Construction and application of new Corynebacterium glutamicum vectors. Biotechnol Tech 13:437–441

    CAS  Google Scholar 

  • Jochmann N, Kurze AK, Czaja LF, Brinkrolf K, Brune I, Hüser AT, Hansmeier N et al (2009) Genetic makeup of the Corynebacterium glutamicum LexA regulon deduced from comparative transcriptomics and in vitro DNA band shift assays. Microbiology 155:1459–1477

    PubMed  CAS  Google Scholar 

  • Jungwirth B, Emer D, Brune I, Hansmeier N, Pühler A, Eikmanns BJ, Tauch A (2008) Triple transcriptional control of the resuscitation promoting factor 2 (rpf2) gene of Corynebacterium glutamicum by the regulators of acetate metabolism RamA and RamB and the cAMP-dependent regulator GlxR. FEMS Microbiol Lett 281:190–197

    PubMed  CAS  Google Scholar 

  • Kaberdina AC, Szaflarski W, Nierhaus KH, Moll I (2009) An unexpected type of ribosomes induced by kasugamycin: a look into ancestral times of protein synthesis? Mol Cell 33:227–236

    PubMed  CAS  Google Scholar 

  • Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N et al (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25

    PubMed  CAS  Google Scholar 

  • Katsumata R, Ozaki A, Oka T, Furuya A (1984) Protoplast transformation of glutamate-producing bacteria with plasmid DNA. J Bacteriol 159:306–311

    PubMed  CAS  Google Scholar 

  • Khan SA (1997) Rolling-circle replication of bacterial plasmids. Microbiol Mol Biol Rev 61:442–455

    PubMed  CAS  Google Scholar 

  • Kim TH, Kim HJ, Park JS, Kim Y, Kim P, Lee HS (2005) Functional analysis of sigH expression in Corynebacterium glutamicum. Biochem Biophys Res Commun 331:1542–1547

    PubMed  CAS  Google Scholar 

  • Kirchner O, Tauch A (2003) Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum. J Biotechnol 104:287–299

    PubMed  CAS  Google Scholar 

  • Knoppová M, Phensaijai M, Veselý M, Zemanová M, Nešvera J, Pátek M (2007) Plasmid vectors for testing in vivo promoter activities in Corynebacterium glutamicum and Rhodococcus erythropolis. Curr Microbiol 55:234–239

    PubMed  Google Scholar 

  • Kočan M, Schäffer S, Ishige T, Sorger-Herrmann U, Wendisch VF, Bott M (2006) Two-component systems of Corynebacterium glutamicum: deletion analysis and involvement of the PhoS-PhoR system in the phosphate starvation response. J Bacteriol 188:724–732

    PubMed  Google Scholar 

  • Koch DJ, Rückert C, Albersmeier A, Hüser AT, Tauch A, Pühler A, Kalinowski J (2005) The transcriptional regulator SsuR activates expression of the Corynebacterium glutamicum sulphonate utilization genes in the absence of sulphate. Mol Microbiol 58:480–494

    PubMed  CAS  Google Scholar 

  • Kohl TA, Baumbach J, Jungwirth B, Pühler A, Tauch A (2008) The GlxR regulon of the amino acid producer Corynebacterium glutamicum: in silico and in vitro detection of DNA binding sites of a global transcription regulator. J Biotechnol 135:340–350

    PubMed  CAS  Google Scholar 

  • Krause FS, Henrich A, Blombach B, Krämer R, Eikmanns BJ, Seibold GM (2010) Increased glucose utilization in Corynebacterium glutamicum by use of maltose, and its application for the improvement of L-valine productivity. Appl Environ Microbiol 76:370–374

    PubMed  CAS  Google Scholar 

  • Krug A, Wendisch VF, Bott M (2005) Identification of AcnR, a TetR-type repressor of the aconitase gene acn in Corynebacterium glutamicum. J Biol Chem 280:585–595

    PubMed  CAS  Google Scholar 

  • Kurusu Y, Satoh Y, Inui M, Kohama K, Kobayashi M, Terasawa M, Yukawa H (1991) Identification of a plasmid partition function in coryneform bacteria. Appl Environ Microbiol 57:759–764

    PubMed  CAS  Google Scholar 

  • Larisch C, Nakunst D, Huser AT, Tauch A, Kalinowski J (2007) The alternative sigma factor SigB of Corynebacterium glutamicum modulates global gene expression during transition from exponential growth to stationary phase. BMC Genomics 8:4

    PubMed  Google Scholar 

  • Letek M, Valbuena N, Ramos A, Ordonez E, Gil JA, Mateos LM (2006) Characterization and use of catabolite-repressed promoters from gluconate genes in Corynebacterium glutamicum. J Bacteriol 188:409–423

    PubMed  CAS  Google Scholar 

  • Letek M, Ordonez E, Fiuza M, Honrubia-Marcos P, Vaquera J, Gil JA, Castro D et al (2007) Characterization of the promoter region of ftsZ from Corynebacterium glutamicum and controlled overexpression of FtsZ. Int Microbiol 10:271–282

    PubMed  CAS  Google Scholar 

  • Lisser S, Margalit H (1994) Determination of common structural features in Escherichia coli promoters by computer analysis. Eur J Biochem 223:823–830

    PubMed  CAS  Google Scholar 

  • Liu Q, Ouyang SP, Kim J, Chen GQ (2007) The impact of PHB accumulation on L-glutamate production by recombinant Corynebacterium glutamicum. J Biotechnol 132:273–279

    PubMed  CAS  Google Scholar 

  • Marcel T, Archer JA, Mengin-Lecreulx D, Sinskey AJ (1990) Nucleotide sequence and organization of the upstream region of the Corynebacterium glutamicum lysA gene. Mol Microbiol 4:1819–1830

    PubMed  CAS  Google Scholar 

  • Matsui K, Ishida M, Tsuchiya M, Sano K (1988) Construction of tryptophan-producing recombinant strains of Brevibacterium lactofermentum using the engineered trp operons. Agric Biol Chem 52:1863–1865

    CAS  Google Scholar 

  • Mendoza-Vargas A, Olvera L, Olvera M, Grande R, Vega-Alvarado L, Taboada B, Jimenez-Jacinto V et al (2009) Genome-wide identification of transcription start sites, promoters and transcription factor binding sites in E. coli. PLoS One 4:e7526

    PubMed  Google Scholar 

  • Merkens H, Beckers G, Wirtz A, Burkovski A (2005) Vanillate metabolism in Corynebacterium glutamicum. Curr Microbiol 51:59–65

    PubMed  CAS  Google Scholar 

  • Miwa K, Matsui H, Terabe M, Nakamori S, Sano K, Momose H (1984) Cryptic plasmids in glutamic acid-producing bacteria. Agric Biol Chem 48:2901–2903

    CAS  Google Scholar 

  • Möker N, Brocker M, Schäffer S, Krämer R, Morbach S, Bott M (2004) Deletion of the genes encoding the MtrA-MtrB two-component system of Corynebacterium glutamicum has a strong influence on cell morphology, antibiotics susceptibility and expression of genes involved in osmoprotection. Mol Microbiol 54:420–438

    PubMed  Google Scholar 

  • Moll I, Grill S, Gualerzi CO, Blasi U (2002) Leaderless mRNAs in bacteria: surprises in ribosomal recruitment and translational control. Mol Microbiol 43:239–246

    PubMed  CAS  Google Scholar 

  • Moll I, Hirokawa G, Kiel MC, Kaji A, Blasi U (2004) Translation initiation with 70S ribosomes: an alternative pathway for leaderless mRNAs. Nucleic Acids Res 32:3354–3363

    PubMed  CAS  Google Scholar 

  • Moreau S, Blanco C, Trautwetter A (1999) Site-specific integration of corynephage phi16: construction of an integration vector. Microbiology 145:539–548

    PubMed  CAS  Google Scholar 

  • Nakamura J, Kanno S, Kimura E, Matsui K, Nakamatsu T, Wachi M (2006) Temperature-sensitive cloning vector for Corynebacterium glutamicum. Plasmid 56:179–186

    PubMed  CAS  Google Scholar 

  • Nakata K, Inui M, Kos PB, Vertès AA, Yukawa H (2004) Vectors for genetic engineering of corynebacteria. In: Saha BC (ed) Fermentation biotechnology. American Chemical Society, Washington, DC, pp 175–191

    Google Scholar 

  • Nakunst D, Larisch C, Huser AT, Tauch A, Puhler A, Kalinowski J (2007) The extracytoplasmic function-type sigma factor SigM of Corynebacterium glutamicum ATCC 13032 is involved in transcription of disulfide stress-related genes. J Bacteriol 189:4696–4707

    PubMed  CAS  Google Scholar 

  • Nentwich SS, Brinkrolf K, Gaigalat L, Huser AT, Rey DA, Mohrbach T, Marin K et al (2009) Characterization of the LacI-type transcriptional repressor RbsR controlling ribose transport in Corynebacterium glutamicum ATCC 13032. Microbiology 155:150–164

    PubMed  CAS  Google Scholar 

  • Nešvera J, Pátek M (2008) Plasmids and promoters in corynebacteria and their applications. In: Burkovski A (ed) Corynebacteria. Genomics and molecular biology. Caister Academic, Norfolk, pp 113–154

    Google Scholar 

  • Nešvera J, Pátek M, Hochmannová J, Abrhamová Z, Bečvařová V, Jelínková M, Vohradský J (1997) Plasmid pGA1 from Corynebacterium glutamicum codes for a gene product that positively influences plasmid copy number. J Bacteriol 179:1525–1532

    PubMed  Google Scholar 

  • Nishimura T, Vertès AA, Shinoda Y, Inui M, Yukawa H (2007) Anaerobic growth of Corynebacterium glutamicum using nitrate as a terminal electron acceptor. Appl Microbiol Biotechnol 75:889–897

    PubMed  CAS  Google Scholar 

  • Nishimura T, Teramoto H, Vertès AA, Inui M, Yukawa H (2008) ArnR, a novel transcriptional regulator, represses expression of the narKGHJI operon in Corynebacterium glutamicum. J Bacteriol 190:3264–3273

    PubMed  CAS  Google Scholar 

  • Oguiza JA, Marcos AT, Martín JF (1997) Transcriptional analysis of the sigA and sigB genes of Brevibacterium lactofermentum. FEMS Microbiol Lett 153:111–117

    PubMed  CAS  Google Scholar 

  • Ohnishi J, Mitsuhashi S, Hayashi M, Ando S, Yokoi H, Ochiai K, Ikeda M (2002) A novel methodology employing Corynebacterium glutamicum genome information to generate a new L-lysine-producing mutant. Appl Microbiol Biotechnol 58:217–223

    PubMed  CAS  Google Scholar 

  • Okibe N, Suzuki N, Inui M, Yukawa H (2009) Isolation, evaluation and use of two strong, carbon source-inducible promoters from Corynebacterium glutamicum. Lett Appl Microbiol 50:173–180

    PubMed  Google Scholar 

  • Olvera L, Mendoza-Vargas A, Flores N, Olvera M, Sigala JC, Gosset G, Morett E et al (2009) Transcription analysis of central metabolism genes in Escherichia coli. Possible roles of σ38 in their expression, as a response to carbon limitation. PLoS One 4:e7466

    PubMed  Google Scholar 

  • Oram M, Woolston JE, Jacobson AD, Holmes RK, Oram DM (2007) Bacteriophage-based vectors for site-specific insertion of DNA in the chromosome of Corynebacteria. Gene 391:53–62

    PubMed  CAS  Google Scholar 

  • Ozaki A, Katsumata R, Oka T, Furuya A (1984) Functional expression of the genes of Escherichia coli in gram-positive Corynebacterium glutamicum. Mol Gen Genet 196:175–178

    PubMed  CAS  Google Scholar 

  • Paget MS, Helmann JD (2003) The sigma70 family of sigma factors. Genome Biol 4:203

    PubMed  Google Scholar 

  • Paget MS, Molle V, Cohen G, Aharonowitz Y, Buttner MJ (2001) Defining the disulphide stress response in Streptomyces coelicolor A3(2): identification of the sigmaR regulon. Mol Microbiol 42:1007–1020

    Google Scholar 

  • Park SD, Lee SN, Park IH, Choi JS, Jeong WK, Kim Y, Lee HS (2004) Isolation and characterization of transcriptional elements from Corynebacterium glutamicum. J Microbiol Biotechnol 14:789–795

    CAS  Google Scholar 

  • Park JU, Jo JH, Kim YJ, Chung SS, Lee JH, Lee HH (2008a) Construction of heat-inducible expression vector of Corynebacterium glutamicum and C. ammoniagenes: fusion of lambda operator with promoters isolated from C. ammoniagenes. J Microbiol Biotechnol 18:639–647

    PubMed  Google Scholar 

  • Park SD, Youn JW, Kim YJ, Lee SM, Kim Y, Lee HS (2008b) Corynebacterium glutamicum σE is involved in responses to cell surface stresses and its activity is controlled by the anti-σ factor CseE. Microbiology 154:915–923

    PubMed  CAS  Google Scholar 

  • Pátek M, Eikmanns BJ, Pátek J, Sahm H (1996) Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif. Microbiology 142:1297–1309

    PubMed  Google Scholar 

  • Pátek M, Nešvera J, Guyonvarch A, Reyes O, Leblon G (2003) Promoters of Corynebacterium glutamicum. J Biotechnol 104:311–323

    PubMed  Google Scholar 

  • Peoples OP, Liebl W, Bodis M, Maeng PJ, Follettie MT, Archer JA, Sinskey AJ (1988) Nucleotide sequence and fine structural analysis of the Corynebacterium glutamicum hom-thrB operon. Mol Microbiol 2:63–72

    PubMed  CAS  Google Scholar 

  • Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Möckel B, Sahm H, Eikmanns BJ (2001) Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum. J Mol Microbiol Biotechnol 3:295–300

    PubMed  CAS  Google Scholar 

  • Qiu J, Helmann JD (2001) The -10 region is a key promoter specificity determinant for the Bacillus subtilis extracytoplasmic-function σ factors σX and σW. J Bacteriol 183:1921–1927

    PubMed  CAS  Google Scholar 

  • Radford AJ, Hodgson AL (1991) Construction and characterization of a Mycobacterium-Escherichia coli shuttle vector. Plasmid 25:149–153

    PubMed  CAS  Google Scholar 

  • Raman S, Song T, Puyang X, Bardarov S, Jacobs WR Jr, Husson RN (2001) The alternative sigma factor SigH regulates major components of oxidative and heat stress responses in Mycobacterium tuberculosis. J Bacteriol 183:6119–6125

    PubMed  CAS  Google Scholar 

  • Reinscheid DJ, Kronemeyer W, Eggeling L, Eikmanns BJ, Sahm H (1994) Stable expression of hom-1-thrB in Corynebacterium glutamicum and its effect on the carbon flux to threonine and related amino acids. Appl Environ Microbiol 60:126–132

    PubMed  CAS  Google Scholar 

  • Rodrigue S, Provvedi R, Jacques PE, Gaudreau L, Manganelli R (2006) The sigma factors of Mycobacterium tuberculosis. FEMS Microbiol Rev 30:926–941

    PubMed  CAS  Google Scholar 

  • Ross W, Ernst A, Gourse RL (2001) Fine structure of E. coli RNA polymerase-promoter interactions: alpha subunit binding to the UP element minor groove. Genes Dev 15:491–506

    PubMed  CAS  Google Scholar 

  • Rückert C, Koch DJ, Rey DA, Albersmeier A, Mormann S, Pühler A, Kalinowski J (2005) Functional genomics and expression analysis of the Corynebacterium glutamicum fpr2-cysIXHDNYZ gene cluster involved in assimilatory sulphate reduction. BMC Genomics 6:121

    PubMed  Google Scholar 

  • Rückert C, Milse J, Albersmeier A, Koch DJ, Puhler A, Kalinowski J (2008) The dual transcriptional regulator CysR in Corynebacterium glutamicum ATCC 13032 controls a subset of genes of the McbR regulon in response to the availability of sulphide acceptor molecules. BMC Genomics 9:483

    PubMed  Google Scholar 

  • Sandoval K, Aguilar A, Paniagua C, Martín JF (1984) Isolation and physical characterization of plasmid pCC1 from Corynebacterium callunae and construction of hybrid derivatives. Appl Microbiol Biotechnol 19:409–413

    CAS  Google Scholar 

  • Santamaría R, Gil JA, Mesas JM, Martín JF (1984) Characterization of endogenous plasmid and development of cloning vectors and a transformation system in Brevibacterium lactofementum. J Gen Microbiol 130:2237–2246

    Google Scholar 

  • Sato H, Orishimo K, Shirai T, Hirasawa T, Nagahisa K, Shimizu H, Wachi M (2008) Distinct roles of two anaplerotic pathways in glutamate production induced by biotin limitation in Corynebacterium glutamicum. J Biosci Bioeng 106:51–58

    PubMed  CAS  Google Scholar 

  • Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73

    PubMed  Google Scholar 

  • Schiller J, Groman N, Coyle M (1980) Plasmids in Corynebacterium diphtheriae and diphtheroids mediating erythromycin resistance. Antimicrob Agents Chemother 18:814–821

    PubMed  CAS  Google Scholar 

  • Schreiner ME, Fiur D, Holatko J, Patek M, Eikmanns BJ (2005) E1 enzyme of the pyruvate dehydrogenase complex in Corynebacterium glutamicum: molecular analysis of the gene and phylogenetic aspects. J Bacteriol 187:6005–6018

    PubMed  CAS  Google Scholar 

  • Schreiner ME, Riedel C, Holatko J, Patek M, Eikmanns BJ (2006) Pyruvate:quinone oxidoreductase in Corynebacterium glutamicum: molecular analysis of the pqo gene, significance of the enzyme, and phylogenetic aspects. J Bacteriol 188:1341–1350

    PubMed  CAS  Google Scholar 

  • Schröder J, Tauch A (2010) Transcriptional regulation of gene expression in Corynebacterium glutamicum: the role of global, master and local regulators in the modular and hierarchical gene regulatory network. FEMS Microbiol Rev 34:685–737

    PubMed  Google Scholar 

  • Schröder J, Jochmann N, Rodionov DA, Tauch A (2010) The Zur regulon of Corynebacterium glutamicum ATCC 13032. BMC Genomics 11:12

    PubMed  Google Scholar 

  • Schrumpf B, Schwarzer A, Kalinowski J, Pühler A, Eggeling L, Sahm H (1991) A functionally split pathway for lysine synthesis in Corynebacterium glutamicium. J Bacteriol 173:4510–4516

    PubMed  CAS  Google Scholar 

  • Schweitzer JE, Stolz M, Diesveld R, Etterich H, Eggeling L (2009) The serine hydroxymethyltransferase gene glyA in Corynebacterium glutamicum is controlled by GlyR. J Biotechnol 139:214–221

    PubMed  CAS  Google Scholar 

  • Seibold GM, Hagmann CT, Schietzel M, Emer D, Auchter M, Schreiner J, Eikmanns BJ (2010) The transcriptional regulators RamA and RamB are involved in the regulation of glycogen synthesis in Corynebacterium glutamicum. Microbiology 156:1256–1263

    PubMed  CAS  Google Scholar 

  • Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Biotechnology 1:784–791

    CAS  Google Scholar 

  • Smith MD, Flickinger JL, Lineberger DW, Schmidt B (1986) Protoplast transformation in coryneform bacteria and introduction of an alpha-amylase gene from Bacillus amyloliquefaciens into Brevibacterium lactofermentum. Appl Environ Microbiol 51:634–639

    PubMed  CAS  Google Scholar 

  • Sonnen H, Thierbach G, Kautz S, Kalinowski J, Schneider J, Pühler A, Kutzner HJ (1991) Characterization of pGA1, a new plasmid from Corynebacterium glutamicum LP-6. Gene 107:69–74

    PubMed  CAS  Google Scholar 

  • Srivastava P, Deb JK (2002) Construction of fusion vectors of corynebacteria: expression of glutathione-S-transferase fusion protein in Corynebacterium acetoacidophilum ATCC 21476. FEMS Microbiol Lett 212:209–216

    PubMed  CAS  Google Scholar 

  • Suda M, Teramoto H, Imamiya T, Inui M, Yukawa H (2008) Transcriptional regulation of Corynebacterium glutamicum methionine biosynthesis genes in response to methionine supplementation under oxygen deprivation. Appl Microbiol Biotechnol 81:505–513

    PubMed  CAS  Google Scholar 

  • Suzuki N, Watanabe K, Okibe N, Tsuchida Y, Inui M, Yukawa H (2009) Identification of new secreted proteins and secretion of heterologous amylase by C. glutamicum. Appl Microbiol Biotechnol 82:491–500

    PubMed  CAS  Google Scholar 

  • Takagi H, Morinaga Y, Miwa K, Nakamori S, Sano K (1986) Versatile cloning vectors constructed with genes indigenous to a glutamic-acid producer, Brevibacterium lactofermentum. Agric Biol Chem 50:2597–2603

    CAS  Google Scholar 

  • Tanaka Y, Okai N, Teramoto H, Inui M, Yukawa H (2008) Regulation of the expression of phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS) genes in Corynebacterium glutamicum R. Microbiology 154:264–274

    PubMed  CAS  Google Scholar 

  • Tateno T, Hatada K, Tanaka T, Fukuda H, Kondo A (2009) Development of novel cell surface display in Corynebacterium glutamicum using porin. Appl Microbiol Biotechnol 84:733–739

    PubMed  CAS  Google Scholar 

  • Tauch A, Hermann T, Burkovski A, Krämer R, Pühler A, Kalinowski J (1998) Isoleucine uptake in Corynebacterium glutamicum ATCC 13032 is directed by the brnQ gene product. Arch Microbiol 169:303–312

    PubMed  CAS  Google Scholar 

  • Tauch A, Pühler A, Kalinowski J, Thierbach G (2000) TetZ, a new tetracycline resistance determinant discovered in gram-positive bacteria, shows high homology to gram-negative regulated efflux systems. Plasmid 44:285–291

    PubMed  CAS  Google Scholar 

  • Tauch A, Götker S, Pühler A, Kalinowski J, Thierbach G (2002a) The alanine racemase gene alr is an alternative to antibiotic resistance genes in cloning systems for industrial Corynebacterium glutamicum strains. J Biotechnol 99:79–91

    PubMed  CAS  Google Scholar 

  • Tauch A, Kirchner O, Löffler B, Götker S, Pühler A, Kalinowski J (2002b) Efficient electrotransformation of Corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1. Curr Microbiol 45:362–367

    PubMed  CAS  Google Scholar 

  • Tauch A, Bischoff N, Brune I, Kalinowski J (2003) Insights into the genetic organization of the Corynebacterium diphtheriae erythromycin resistance plasmid pNG2 deduced from its complete nucleotide sequence. Plasmid 49:63–74

    PubMed  CAS  Google Scholar 

  • Trautwetter A, Blanco C (1991) Structural organization of the Corynebacterium glutamicum plasmid pCG100. J Gen Microbiol 137:2093–2101

    PubMed  CAS  Google Scholar 

  • Tsuchida Y, Kimura S, Suzuki N, Inui M, Yukawa H (2009) Characterization of a new 2.4-kb plasmid of Corynebacterium casei and development of stable corynebacterial cloning vector. Appl Microbiol Biotechnol 81:1107–1115

    PubMed  CAS  Google Scholar 

  • Tsuchiya M, Morinaga Y (1988) Genetic control systems of Escherichia coli can confer inducible expression of cloned genes in coryneform bacteria. Biotechnology 6:428–430

    CAS  Google Scholar 

  • Vašicová P, Abrhámová Z, Nešvera J, Pátek M, Sahm H, Eikmanns B (1998) Integrating and autonomously replicating vectors for analysis of promoters in Corynebacterium glutamicum. Biotechnol Tech 12:743–746

    Google Scholar 

  • Vašicová P, Pátek M, Nešvera J, Sahm H, Eikmanns B (1999) Analysis of the Corynebacterium glutamicum dapA promoter. J Bacteriol 181:6188–6191

    PubMed  Google Scholar 

  • Venkova T, Pátek M, Nešvera J (2001) Identification of a novel gene involved in stable maintenance of plasmid pGA1 from Corynebacterium glutamicum. Plasmid 46:153–162

    PubMed  CAS  Google Scholar 

  • Venkova-Canova T, Pátek M, Nešvera J (2003) Control of rep gene expression in plasmid pGA1 from Corynebacterium glutamicum. J Bacteriol 185:2402–2409

    PubMed  CAS  Google Scholar 

  • Venkova-Canova T, Pátek M, Nešvera J (2004) Characterization of the cryptic plasmid pCC1 from Corynebacterium callunae and its use for vector construction. Plasmid 51:54–60

    PubMed  CAS  Google Scholar 

  • Veselý M, Pátek M, Nešvera J, Čejková A, Masák J, Jirků V (2003) Host-vector system for phenol-degrading Rhodococcus erythropolis based on Corynebacterium plasmids. Appl Microbiol Biotechnol 61:523–527

    PubMed  Google Scholar 

  • von der Osten CH, Barbas CF 3rd, Wong CH, Sinskey AJ (1989) Molecular cloning, nucleotide sequence and fine-structural analysis of the Corynebacterium glutamicum fda gene: structural comparison of C. glutamicum fructose-1,6-biphosphate aldolase to class I and class II aldolases. Mol Microbiol 3:1625–1637

    PubMed  Google Scholar 

  • Xu D, Tan Y, Huan X, Hu X, Wang X (2010) Construction of a novel shuttle vector for use in Brevibacterium flavum, an industrial amino acid producer. J Microbiol Methods 80:86–92

    PubMed  CAS  Google Scholar 

  • Yasuda K, Jojima T, Suda M, Okino S, Inui M, Yukawa H (2007) Analyses of the acetate-producing pathways in Corynebacterium glutamicum under oxygen-deprived conditions. Appl Microbiol Biotechnol 77:853–860

    PubMed  CAS  Google Scholar 

  • Yoshihama M, Higashiro K, Rao EA, Akedo M, Shanabruch WG, Follettie MT, Walker GC et al (1985) Cloning vector system for Corynebacterium glutamicum. J Bacteriol 162:591–597

    PubMed  CAS  Google Scholar 

  • Youn JW, Jolkver E, Kramer R, Marin K, Wendisch VF (2008) Identification and characterization of the dicarboxylate uptake system DccT in Corynebacterium glutamicum. J Bacteriol 190:6458–6466

    PubMed  CAS  Google Scholar 

  • Yukawa H, Omumasaba CA, Nonaka H, Kos P, Okai N, Suzuki N, Suda M et al (2007) Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology 153:1042–1058

    PubMed  CAS  Google Scholar 

  • Zemanová M, Kadeřábková P, Pátek M, Knoppová M, Šilar R, Nešvera J (2008) Chromosomally encoded small antisense RNA in Corynebacterium glutamicum. FEMS Microbiol Lett 279:195–201

    PubMed  Google Scholar 

  • Zhang Y, Praszkier J, Hodgson A, Pittard AJ (1994) Molecular analysis and characterization of a broad-host-range plasmid, pEP2. J Bacteriol 176:5718–5728

    PubMed  CAS  Google Scholar 

  • Zupancic TJ, Kittle JD, Baker BD, Miller CJ, Palmer DT, Asai Y, Inui M et al (1995) Isolation of promoters from Brevibacterium flavum strain MJ233C and comparison of their gene expression levels in B. flavum and Escherichia coli. FEMS Microbiol Lett 131:121–126

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in the authors’ laboratory was supported by grant 204/09/J015 from the Scientific Council of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Pátek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pátek, M., Nešvera, J. (2013). Promoters and Plasmid Vectors of Corynebacterium glutamicum . In: Yukawa, H., Inui, M. (eds) Corynebacterium glutamicum. Microbiology Monographs, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29857-8_2

Download citation

Publish with us

Policies and ethics