Skip to main content

On Multiplicative Maps of Continuous and Smooth Functions

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2050))

Abstract

In this note, we study the general form of a multiplicative bijection on several families of functions defined on manifolds, both real or complex valued. In the real case, we prove that it is essentially defined by a composition with a diffeomorphism of the underlying manifold (with a bit more freedom in families of continuous functions). Our results in the real case are mostly simple extensions of known theorems. We then show that in the complex case, the only additional freedom allowed is complex conjugation. Finally, we apply those results to characterize the Fourier transform between certain function spaces.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S. Alesker, S. Artstein-Avidan, V. Milman, A characterization of the Fourier transform and related topics (A special volume in honor of Prof. V.l Havin). Am. Math. Soc. Transl. (2) 226, 11–26 (2009)

    Google Scholar 

  2. S. Artstein-Avidan, H. König, V. Milman, The chain rule as a functional equation. J. Funct. Anal. 259, 2999–3024 (2010)

    Google Scholar 

  3. S. Alesker, S. Artstein-Avidan, D. Faifman, V. Milman, A characterization of product preserving maps with applications to a characterization of the Fourier transform. Illinois J. Math. 54(3), 1115–1132 (2010)

    Google Scholar 

  4. S. Banach, Sur l’équation fonctionelle \(f(x + y) = f(x) + f(y)\). Fund. Math. 1, 123–124 (1920)

    Google Scholar 

  5. H. König, V. Milman, Characterizing the derivative and the entropy function by the Leibniz rule. With appendix by D. Faifman. J. Funct. Anal. 261(5), 1325–1344 (2011)

    Google Scholar 

  6. I.M. Gel’fand, G.E. Shilov, Generalized Functions, vol. 1. Properties and Operations (Academic, New York, 1964 [1958])

    Google Scholar 

  7. H. König, V. Milman, A functional equation characterizing the second derivative. J. Funct. Anal. 261(4), 876–896 (2011)

    Google Scholar 

  8. H. König, V. Milman, The chain rule functional equation on \({\mathbb{R}}^{n}\). J. Funct. Anal. 261(4), 861–875 (2011)

    Google Scholar 

  9. A.N. Milgram, Multiplicative semigroups of continuous functions. Duke Math. J. 16, 377–383 (1949)

    Google Scholar 

  10. J. Mrcun, On isomorphisms of algebras of smooth functions. Proc. Am. Math. Soc. 133, 3109–3113 (2005)

    Google Scholar 

  11. J. Mrcun, P. Semrl, Multiplicative bijections between algebras of differentiable functions. Annales Academae Scientiarum Fennicae Mathematica 32, 471–480 (2007)

    Google Scholar 

  12. J. Peetre, Une caractérisation abstraite des opérateurs différentiels. Math. Scand. 7, 211–218 (1959)

    Google Scholar 

  13. F.C. Sánchez, J.C. Sánchez, Some preserver problems on algebras of smooth functions. Ark. Mat. 48, 289–300 (2010)

    Google Scholar 

  14. D.J. Saunders, The Geometry of Jet Bundles (Cambridge University Press, London, 1989)

    Google Scholar 

  15. W. Sierpinski, Sur l’équation fonctionelle \(f(x + y) = f(x) + f(y)\). Fundamenta Math. 1, 116–122 (1920)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mikhail Sodin for several useful discussions, Bo’az Klartag for explaining to us the failure of our original method of zero sets in the C n-dimensional setting, and the referee for numerous useful remarks and references, which allowed us to improve our results, and helped to provide better structure and context for the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiri Artstein-Avidan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Artstein-Avidan, S., Faifman, D., Milman, V. (2012). On Multiplicative Maps of Continuous and Smooth Functions. In: Klartag, B., Mendelson, S., Milman, V. (eds) Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol 2050. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29849-3_3

Download citation

Publish with us

Policies and ethics