Skip to main content

On the Mean Width of Log-Concave Functions

  • Chapter
  • First Online:
Geometric Aspects of Functional Analysis

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2050))

Abstract

In this work we present a new, natural, definition for the mean width of log-concave functions. We show that the new definition coincides with a previous one by B. Klartag and V. Milman, and deduce some properties of the mean width, including an Urysohn type inequality. Finally, we prove a functional version of the finite volume ratio estimate and the low-\({M}^{{_\ast}}\) estimate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Artstein-Avidan, V. Milman, A characterization of the support map. Adv. Math. 223(1), 379–391 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Artstein-Avidan, V. Milman, Hidden structures in the class of convex functions and a new duality transform. J. Eur. Math. Soc. (JEMS) 13(4), 975–1004 (2011)

    Google Scholar 

  3. S. Artstein-Avidan, B. Klartag, V. Milman, The santaló point of a function, and a functional form of the santaló inequality. Mathematika 51(1–2), 33–48 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. K. Ball, Isometric problems in l p and sections of convex sets. PhD thesis, Cambridge University (1986)

    Google Scholar 

  5. Y. Gordon, in On Milman’s Inequality and Random Subspaces which Escape Through a Mesh in \({\mathbb{R}}^{n}\), ed. by J. Lindenstrauss, V. Milman. Geometric Aspects of Functional Analysis, vol. 1317 (Springer, Berlin, 1988), pp. 84–106

    Google Scholar 

  6. B. Klartag, V. Milman, Geometry of log-concave functions and measures. Geometriae Dedicata 112(1), 169–182 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. R. McEliece, in The Theory of Information and Coding. Encyclopedia of Mathematics and Its Applications, vol. 86, 2nd edn. (Cambridge University Press, London, 2002)

    Google Scholar 

  8. V. Milman, Almost euclidean quotient spaces of subspaces of a Finite-Dimensional normed space. Proc. Am. Math. Soc. 94(3), 445–449 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. V. Milman, Geometrical inequalities and mixed volumes in the local theory of banach spaces. (Colloquium in honor of Laurent Schwartz, vol. 1 (Palaiseau, 1983). Astérisque 131, 373–400 (1985)

    Google Scholar 

  10. V. Milman, in Random Subspaces of Proportional Dimension of Finite Dimensional Normed Spaces: Approach Through the Isoperimetric Inequality, ed. by N. Kalton, E. Saab. Banach Spaces (Columbia, MO, 1984). Lecture Notes in Math., vol. 1166 (Springer, Berlin, 1985), pp. 106–115

    Google Scholar 

  11. V. Milman, in Geometrization of Probability, ed. by M. Kapranov, Y. Manin, P. Moree, S. Kolyada, L. Potyagailo. Geometry and Dynamics of Groups and Spaces, vol. 265 (Birkhäuser, Basel, 2008), pp. 647–667

    Google Scholar 

  12. A. Pajor, N. Tomczak-Jaegermann, Subspaces of small codimension of Finite-Dimensional banach spaces. Proc. Am. Math. Soc. 97(4), 637–642 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Pisier, in The Volume of Convex Bodies and Banach Space Geometry. Cambridge Tracts in Mathematics, vol. 94 (Cambridge University Press, Cambridge, 1989)

    Google Scholar 

  14. R. Schneider, in Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia of Mathematics and Its Applications, vol. 44 (Cambridge University Press, Cambridge, 1993)

    Google Scholar 

  15. S. Szarek, On kashin’s almost euclidean orthogonal decomposition of \({l}_{n}^{1}\). Bulletin de l’Académie Polonaise des Sciences. Série des Sciences Mathématiques, Astronomiques et Physiques 26(8), 691–694 (1978)

    Google Scholar 

  16. S. Szarek, N. Tomczak-Jaegermann, On nearly euclidean decomposition for some classes of banach spaces. Compos. Math. 40(3), 367–385 (1980)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank my advisor, Vitali Milman, for raising most of the questions in this paper, and helping me tremendously in finding the answers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liran Rotem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rotem, L. (2012). On the Mean Width of Log-Concave Functions. In: Klartag, B., Mendelson, S., Milman, V. (eds) Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol 2050. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29849-3_22

Download citation

Publish with us

Policies and ethics