Advertisement

On Modules Over Valuations

  • Semyon AleskerEmail author
Chapter
  • 1.8k Downloads
Part of the Lecture Notes in Mathematics book series (LNM, volume 2050)

Abstract

To any smooth manifold X an algebra of smooth valuations V (X) was associated in [Alesker, Israel J. Math. 156, 311–339 (2006); Adv. Math. 207(1), 420–454 (2006); Theory of Valuations on Manifolds, IV. New Properties of the Multiplicative Structure (2007); Alesker, Fu, Trans. Am. Math. Soc. 360(4), 1951–1981 (2008)]. In this note we initiate a study of V (X)-modules. More specifically we study finitely generated projective modules in analogy to the study of vector bundles on a manifold. In particular it is shown that for a compact manifold X there exists a canonical isomorphism between the K-ring constructed out of finitely generated projective V (X)-modules and the classical topological K 0-ring constructed out of vector bundles over X.

Keywords

Vector Bundle Topological Space Direct Summand Euler Characteristic Full Subcategory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

I thank M. Borovoi for useful discussions on non-abelian cohomology, and F. Schuster for numerous remarks on the first version of the paper. Partially supported by ISF grant 701/08.

References

  1. 1.
    S. Alesker, Theory of valuations on manifolds, I. Linear spaces. Israel J. Math. 156, 311–339 (2006). math.MG/0503397 Google Scholar
  2. 2.
    S. Alesker, Theory of valuations on manifolds. II. Adv. Math. 207(1), 420–454 (2006). math.MG/0503399Google Scholar
  3. 3.
    S. Alesker, Theory of Valuations on Manifolds, IV. New Properties of the Multiplicative Structure. Geometric Aspects of Functional Analysis, Lecture Notes in Math., vol. 1910 (Springer, Berlin, 2007), pp. 1–44. math.MG/0511171Google Scholar
  4. 4.
    S. Alesker, New Structures on Valuations and Applications. Lecture Notes of the Advanced Course on Integral Geometry and Valuation Theory at CRM, Barcelona, Preprint. arXiv:1008.0287Google Scholar
  5. 5.
    S. Alesker, J.H.G. Fu, Theory of valuations on manifolds, III. Multiplicative structure in the general case. Trans. Am. Math. Soc. 360(4), 1951–1981 (2008); math.MG/0509512Google Scholar
  6. 6.
    M.F. Atiyah, in K-Theory. Lecture Notes by D.W. Anderson (W.A. Benjamin Inc., New York, 1967)Google Scholar
  7. 7.
    A. Bernig, Algebraic integral geometry. Global Differential Geometry, edited by C. Bär, J. Lohkamp and M. Schwarz, Springer 2012. arXiv:1004.3145Google Scholar
  8. 8.
    J.H.G. Fu, in Algebraic Integral Geometry. Lecture Notes of the Advanced Course on Integral Geometry and Valuation Theory at CRM, Barcelona. PreprintGoogle Scholar
  9. 9.
    A. Grothendieck, A General Theory of Fibre Spaces with Structure Sheaf (University of Kansas, KS, 1955) Preprint. http://www.math.jussieu.fr/leila/grothendieckcircle/GrothKansas.pdf
  10. 10.
    R. Hartshorne, in Algebraic Geometry. Graduate Texts in Mathematics, vol. 52 (Springer, New York, 1977)Google Scholar
  11. 11.
    J.-P. Serre, Modules projectifs et espaces fibrés à fibre vectorielle. Séminaire Dubreil-Pisot: algèbre et théorie des nombres 11 (1957/58); Oeuvres I, pp. 531–543Google Scholar
  12. 12.
    R.G. Swan, Vector bundles and projective modules. Trans. Am. Math. Soc. 105, 264–277 (1962)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Sackler Faculty of Exact Sciences, Department of MathematicsTel Aviv UniversityTel AvivIsrael

Personalised recommendations