Skip to main content

Projections of Probability Distributions: A Measure-Theoretic Dvoretzky Theorem

  • Chapter
  • First Online:
Geometric Aspects of Functional Analysis

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2050))

Abstract

Many authors have studied the phenomenon of typically Gaussian marginals of high-dimensional random vectors; e.g., for a probability measure on \({\mathbb{R}}^{d}\), under mild conditions, most one-dimensional marginals are approximately Gaussian if \(d\) is large. In earlier work, the author used entropy techniques and Stein’s method to show that this phenomenon persists in the bounded-Lipschitz distance for \(k\)-dimensional marginals of d-dimensional distributions, if \(k = o(\sqrt{\log (d)})\). In this paper, a somewhat different approach is used to show that the phenomenon persists if \(k < \frac{2\log (d)} {\log (\log (d))}\), and that this estimate is best possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.G. Bobkov, On concentration of distributions of random weighted sums. Ann. Probab. 31(1), 195–215 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. E. Borel, Sur les principes de la theorie cinétique des gaz. Annales de l’ecole normale sup. 23, 9–32 (1906)

    MathSciNet  MATH  Google Scholar 

  3. P. Diaconis, D. Freedman, Asymptotics of graphical projection pursuit. Ann. Statist. 12(3), 793–815 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. R.M. Dudley, The sizes of compact subsets of Hilbert space and continuity of Gaussian processes. J. Funct. Anal. 1, 290–330 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Dvoretzky, in Some Results on Convex Bodies and Banach Spaces. Proc. Internat. Sympos. Linear Spaces, Jerusalem, 1960 (Jerusalem Academic Press, Jerusalem, 1961), pp. 123–160

    Google Scholar 

  6. T. Figiel, J. Lindenstrauss, V.D. Milman, The dimension of almost spherical sections of convex bodies. Acta Math. 139(1–2), 53–94 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  7. G.B. Folland, How to integrate a polynomial over a sphere. Am. Math. Mon. 108(5), 446–448 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. B. Klartag, A central limit theorem for convex sets. Invent. Math. 168(1), 91–131 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Klartag, Power-law estimates for the central limit theorem for convex sets. J. Funct. Anal. 245(1), 284–310 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. E. Meckes, Approximation of projections of random vectors. J. Theoret. Probab. 25(2), (2012)

    Google Scholar 

  11. M.W. Meckes, Gaussian marginals of convex bodies with symmetries. Beiträge Algebra Geom. 50(1), 101–118 (2009)

    MathSciNet  MATH  Google Scholar 

  12. V.D. Milman, A new proof of A. Dvoretzky’s theorem on cross-sections of convex bodies. Funkcional. Anal. i Priložen. 5(4), 28–37 (1971)

    MathSciNet  Google Scholar 

  13. V.D. Milman, G. Schechtman, in Asymptotic Theory of Finite-Dimensional Normed Spaces, with an appendix by M. Gromov. Lecture Notes in Mathematics, vol. 1200 (Springer, Berlin, 1986)

    Google Scholar 

  14. G. Pisier, in Some Applications of the Metric Entropy Condition to Harmonic Analysis. Banach Spaces, Harmonic Analysis, and Probability Theory. Lecture Notes in Mathematics, vol. 995 (Springer, Berlin, 1983)

    Google Scholar 

  15. V.N. Sudakov, Typical distributions of linear functionals in finite-dimensional spaces of high dimension. Dokl. Akad. Nauk SSSR 243(6), 1402–1405 (1978)

    MathSciNet  Google Scholar 

  16. S. Szarek, On Kashin’s almost Euclidean orthogonal decomposition of \({l}_{n}^{1}\). Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 26(8), 691–694 (1978)

    Google Scholar 

  17. M. Talagrand, The Generic Chaining. Upper and Lower Bounds of Stochastic Processes. Springer Monographs in Mathematics (Springer, Berlin, 2005)

    Google Scholar 

  18. H. von Weizsäckerm Sudakov’s typical marginals, random linear functionals and a conditional central limit theorem. Probab. Theor. Relat. Fields 107(3), 313–324 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks Mark Meckes for many useful discussions, without which this paper may never have been completed. Thanks also to Michel Talagrand, who pointed out a simplification in the proof of the main theorem, and to Richard Dudley for clarifying the history of “Dudley’s entropy bound”. Research supported by an American Institute of Mathematics 5-year Fellowship and NSF grant DMS-0852898.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Meckes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meckes, E. (2012). Projections of Probability Distributions: A Measure-Theoretic Dvoretzky Theorem. In: Klartag, B., Mendelson, S., Milman, V. (eds) Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol 2050. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29849-3_18

Download citation

Publish with us

Policies and ethics