Skip to main content

Forecasting the Adoption of Emerging Energy Technologies: Managing Climate Change, Governance and Evolving Social Values

  • Chapter
  • First Online:
Climate Change Governance

Part of the book series: Climate Change Management ((CCM))

Abstract

With the link between fossil fuel use and climate change now almost universally accepted, tackling greenhouse gas emissions (GHG) has become a subject of great social urgency and technological challenge. A variety of models exist, or are under development, for analyzing the role of more sustainable systems, such as renewable energy technologies, in mitigating climate change. However, the direct cost of these technologies is generally higher than that of fossil fuel systems. Methods are needed to more fully account for external factors, societal impacts, and social values associated with fossil fuels versus sustainable energy systems. This paper presents a conceptual model targeted at informing energy policy in order to bring about improvements to inform the management of energy resources so that they can be optimized for climate change. This would then yield a set of governance actions. The model builds on Linstone’s multiple perspectives: technical, organizational, and personal, by attempting to forecast technology development along these perspectives. Thus, factors enabling faster and better adoption by consumers, and faster and more efficient development by organizations are evaluated by taking the potential technological improvements into account.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Using full life cycle analysis, most forms of power generation are responsible for some amount of energy expenditure, such as fossil fuels used in the creation of parts or components of the system. The PV manufacturing process, for example, typically emits an amount of carbon equivalent to about 25 g of CO2 per kilowatt hour of electricity produced (25 gCO2/kWh). By contrast, coal emits about 950 gCO2/kWh.

References

  • Abraham, B. P., & Moitra, S. D. (2001). Innovation assessment through patent analysis. Technovation, 21(4), 245–252.

    Article  Google Scholar 

  • Agrawala, S., Broad, K., & Guston, D. H. (2001). Integrating Climate Forecasts and Societal Decision Making: Challenges to an Emergent Boundary Organization. Science, Technology and Human Values, 26, 454–477.

    Article  Google Scholar 

  • Ajzen, I. (1991). The Theory of Planned Behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211.

    Article  Google Scholar 

  • Ashton, W., & Sen, R. (1988). Using patent information in technology business planning-II. Research Technology Management, 32, 36–42.

    Google Scholar 

  • Astrand, K., & Neij, L. (2006). An assessment of governmental wind power programmes in Sweden – using a systems approach. Energy Policy, 34(3), 277–296.

    Article  Google Scholar 

  • Baird, B. F. (1989). Managerial decisions under uncertainty: an introduction to the analysis of decision making. New York: Wiley.

    Google Scholar 

  • Banta, D. (2003). The development of health technology assessment. Health Policy, 63(2), 121–132.

    Article  Google Scholar 

  • Basberg, B. (1987). Patents and the measurement of technological change: A survey of the literature. Research Policy, 16(2–4), 131–141.

    Article  Google Scholar 

  • Bass, F. M. (2004). Comments on “A New Product Growth for Model Consumer Durables”. Management Science, 50(12), 1833–1840.

    Article  Google Scholar 

  • Bengisu, M., & Nekhili, R. (2006). Forecasting emerging technologies with the aid of science and technology databases. Technological Forecasting and Social Change, 73(7), 835–844.

    Article  Google Scholar 

  • Blankinship, S. (2006). Technology Makes Demand Response a Viable Asset Option. Retrieved from: http://www.power-eng.com/articles/print/volume-110/issue-8/dg-update/technology-makes-demand-response-a-viable-asset-option.html [Accessed: 28 February 2012].

  • Brinn, M. (2003). Investigation of forward citation count as a patent analysis method. Systems and Information Engineering Design Symposium.

    Google Scholar 

  • Brooks, H. (1976). Technology Assessment in Retrospect. Science, Technology and Human Values, 17, 17–29.

    Article  Google Scholar 

  • Carrillo, M., & González, J. M. (2002). A New Approach to Modeling Sigmoidal Curves. Technological Forecasting and Social Change, 69(3), 233–241.

    Article  Google Scholar 

  • Clemencon, R. (2008). The Bali Road Map: A First Step on a Difficult Journey to a Post-Kyoto Protocol Agreement. Journal of Environment and Development, 17(1), 70–94.

    Article  Google Scholar 

  • Coates, J. F. (1973). Interdisciplinary considerations in sponsoring technology assessments. In M. J. Cetron & B. Bartocha (Eds.), Technology assessment in a dynamic environment (pp. 109–120). New York: Gordon & Breach.

    Google Scholar 

  • Coates, J. F. (2001). A 21st Century Agenda for Technology Assessment. Technological Forecasting and Social Change, 67(2–3), 303–308.

    Article  Google Scholar 

  • Coates, J. F., & Fabian, T. (1982). Technology Assessment in Industry: A Counter Productive Myth? Technological Forecasting and Social Change, 22(3–4), 331–341.

    Article  Google Scholar 

  • Coates, V., Farooque, M., Klavans, R., Lapid, K., Linstone, H. A., Pistorius, C., et al. (2001). On the Future of Technological Forecasting. Technological Forecasting and Social Change, 67(1), 1–17.

    Article  Google Scholar 

  • Daim, T. U., Rueda, G., Martin, H., & Gerdsri, P. (2006). Forecasting emerging technologies: Use of bibliometrics and patent analysis. Technological Forecasting and Social Change, 73(8), 981–1012.

    Article  Google Scholar 

  • Davis, F. D. (1985). A technology acceptance model for empirically testing new end-user information systems: theory and results. PhD Thesis. Cambridge: M.I.T. Press.

    Google Scholar 

  • Ek, K. (2005). Public and private attitudes towards “green” electricity: the case of Swedish wind power. Energy Policy, 33(13), 1677–1689.

    Article  Google Scholar 

  • van den Ende, J., Mulder, K., Knot, M., Moors, E., & Vergragt, P. (1998). Traditional and Modern Technology Assessment: Toward a Toolkit. Technological Forecasting and Social Change, 58(1/2), 5–21.

    Article  Google Scholar 

  • Energy Information Administration (2008). Annual Energy Outlook 2008 with Projections to 2030. Retrieved from: http://www.eia.gov/oiaf/aeo/pdf/0383%282008%29.pdf [Accessed: 28 February 2012].

  • Figueira, J., Greco, S., & Ehrgott, M. (2005). Multiple criteria decision analysis: State of the art surveys. New York: Springer Science & Business Media.

    Google Scholar 

  • Fishbein, M., Ajzen, I. (1975). Belief, attitude, intention, and behavior: An introduction to theory and research. Reading, Mass., Addison-Wesley Pub. Co.

    Google Scholar 

  • Forrester, J. W. (1961). Industrial dynamics. Cambridge: M.I.T. Press.

    Google Scholar 

  • Genus, A. (2006). Rethinking constructive technology assessment as democratic, reflective, discourse. Technological Forecasting and Social Change, 73(1), 13–26.

    Article  Google Scholar 

  • Gerdsri, P., & Kocaoglu, D. F. (2007). Technology policy instrument (TPI): A decision model for evaluating emerging technologies for national technology policy—research framework. Portland: International Center for Management of Engineering and Technology.

    Google Scholar 

  • Grin, J., & van de Graaf, H. (1996). Technology assessment as learning. Science, Technology and Human Values, 21(1), 72–99.

    Article  Google Scholar 

  • Grundmann, R. (2006). Ozone and climate: Scientific consensus and leadership. Science, Technology and Human Values, 31(1), 73–101.

    Article  Google Scholar 

  • Guston, D. H., & Sarewitz, D. (2002). Real-time technology assessment. Technology in Society, 24(1–2), 93–109.

    Article  Google Scholar 

  • Harmon, R. R., & Cowan, K. R. (2009). A multiple perspectives view of the market case for green energy. Technological Forecasting and Social Change, 76(1), 204–213.

    Article  Google Scholar 

  • Herrick, C., & Sarewitz, D. (2000). Ex Post evaluation: A more effective role for scientific assessments in environmental policy. Science, Technology and Human Values, 25, 309–331.

    Article  Google Scholar 

  • Hildebrandt, M., & Gutwirth, S. (2008). Public proof in courts and Jury trials: Relevant for pTA Citizens’ Juries? Science, Technology and Human Values, 33(5), 582–604.

    Article  Google Scholar 

  • Ingle, A., Hammond, R., & Nguyen, M. (2009). System dynamics team project for Wayne Wakeland. Portland: Portland State University.

    Google Scholar 

  • Kabir, C., Sharif, M. N., & Adulbhan, P. (1981). System dynamics modeling for forecasting technological substitution. Computers and Industrial Engineering, 5(1), 7–21.

    Article  Google Scholar 

  • Kiefer, D.M. (1973). Technology assessment: A Layman’s overview in technology assessment. In: Cetron, M.J., Bartocha, B. (eds.). Technology assessment in a dynamic environment (pp. 3–34) New York: Gordon & Breach.

    Google Scholar 

  • Kostoff, R. N., Toothman, D. R., Eberhart, H. J., & Humenik, J. A. (2001). Text mining using database tomography and bibliometrics: A review. Technological Forecasting and Social Change, 68(3), 223–253.

    Article  Google Scholar 

  • Kwon, T. H., & Zmud,  . (1987). Unifying the fragmented models of information systems implementation. In R. J. Boland & R. A. Hirschheim (Eds.), Critical issues in information systems research. New York: John Wiley & Sons.

    Google Scholar 

  • Lengwiler, M. (2008). Participatory approaches in science and technology: Historical origins and current practices in critical perspective. Science, Technology and Human Values, 33(2), 186–200.

    Article  Google Scholar 

  • Linstone, H. A. (1984). Multiple perspectives for decision making: Bridging the gap between analysis and action. New York/North-Holland: Elsevier.

    Google Scholar 

  • Linstone, H. A. (1999). Decision making for technology executives using multiple perspectives to improved performance. Boston/London: Artech House.

    Google Scholar 

  • Linstone, H. A., University, Portland State, & Institute, Futures Research. (1981). The Multiple perspective concept, with applications to technology assessment and other decision areas. Portland: Futures Research Institute.

    Google Scholar 

  • Liu, S. J., & Shyu, J. (1997). Strategic planning for technology development with patent analysis. International Journal of Technology Management, 13(5/6), 661–680.

    Article  Google Scholar 

  • Marris, C., Joly, P. B., & Rip, A. (2008). Interactive technology assessment in the real world: Dual dynamics in an iTA exercise on genetically modified vines. Science, Technology and Human Values, 33(1), 813–836.

    Article  Google Scholar 

  • Martino, J. P. (1983). Technological forecasting for decision making. New York/Amsterdam: Elsevier.

    Google Scholar 

  • McDaid, D. (2003). Co-ordinating health technology assessment in Canada: A European perspective. Health Policy, 63(2), 205–213.

    Article  Google Scholar 

  • Menz, F. C. (2005). Green electricity policies in the United States: Case study. Energy Policy, 33(18), 2398–2410.

    Article  Google Scholar 

  • Menz, F. C., & Vachon, S. (2006). The effectiveness of different policy regimes for promoting wind power: Experiences from the states. Energy policy, 34(14), 1786.

    Article  Google Scholar 

  • Millett, S. M., & Honton, E. J. (1991). A manager’s guide to technology forecasting and strategy analysis methods. Columbus, Ohio: Battelle Press.

    Google Scholar 

  • Morris, S., DeYong, C., Wu, Z., Salman, S., & Yemenu, D. (2002). Diva: A visualization system for exploring document databases for technology forecasting. Computers and Industrial Engineering, 43(4), 841–862.

    Article  Google Scholar 

  • Norton, M. (2000). Introductory concepts in information science. Medford: Information Today.

    Google Scholar 

  • Palm, E., & Hansson, S. O. (2006). The case for ethical technology assessment (eTA). Technological Forecasting and Social Change, 73(5), 543–558.

    Article  Google Scholar 

  • Pilkington, A. (2003). Technology commercialisation: Patent Portfolio alignment and the fuel cell. Portland International Conference on Management Engineering and Technology (PICMET’03).

    Google Scholar 

  • Pilkington, A., Teichert, T. (2005). Conceptualizing the Field of Technology Management. Portland International Conference on Management Engineering and Technology (PICMET’05).

    Google Scholar 

  • Porter, A. L. (1991). Forecasting and management of technology. New York: Wiley.

    Google Scholar 

  • Porter, A. (2003). Mining PICMET: 1997–2003 papers help track you management of technology developments. Portland International Conference on Management of Engineering and Technology (PICMET’03).

    Google Scholar 

  • Porter, A., Watts, R. (2003). TI-Mining conference proceedings for corporate technology knowledge management. Portland International Conference on Management of Engineering and Technology (PICMET’03).

    Google Scholar 

  • Porter, A., Watts, R. (2005). Using the PICMET Abstracts, 1997–2005, in VantagePoint Reader on Your Conference CD: Tutorial. Portland International Conference on Management of Engineering and Technology (PICMET’05).

    Google Scholar 

  • Richey, J. M., & Grinnell, M. (2004). Evolution of Roadmapping at Motorola. Research technology management, 47(2), 37.

    Google Scholar 

  • Rogers, E. M. (1962). Diffusion of innovations. New York: Free Press.

    Google Scholar 

  • Rogers, E. M. (1995). Diffusion of innovations. New York: Free Press.

    Google Scholar 

  • Roy, B. (1968). Classement et choix en présence de points de vue multiples (la méthode ELECTRE). Revue d’Informatique et de Recherche Opérationelle (RIRO), 2(8), 57–75.

    Google Scholar 

  • Schot, J. W. (1992). Constructive technology assessment and technology dynamics: The case of clean technologies. Science, Technology and Human Values, 17(1), 36–56.

    Article  Google Scholar 

  • Shackley, S., & Wynne, B. (1996). Representing uncertainty in global climate change science and policy: Boundary-ordering devices and authority. Science, Technology and Human Values, 21(3), 275–302.

    Article  Google Scholar 

  • Shrader-Frechette, K. S. (1980). Technology assessment as applied philosophy of science. Science, Technology and Human Values, 33(33), 33–50.

    Article  Google Scholar 

  • Simon, H. A. (1976). Administrative behavior: A study of decision-making processes in administrative organization. New York: Free Press.

    Google Scholar 

  • Simon, H. A. (1991). Organizations and Markets. Journal of Economic Perspectives, 5(2), 25–44.

    Article  Google Scholar 

  • Stadler, M., Kranzl, L., Huber, C., Haas, R., & Tsioliaridou, E. (2007). Policy strategies and paths to promote sustainable energy systems—The dynamic Invert simulation tool. Energy policy, 35(1), 597–608.

    Article  Google Scholar 

  • Sterman, J. (2000). Business dynamics: Systems thinking and modeling for a complex world. Boston: Irwin/McGraw-Hill.

    Google Scholar 

  • Stirling, A. (2008). “Opening up” and “closing down”: Power, participation, and pluralism in the social appraisal of technology. Science, Technology and Human Values, 33(2), 262–294.

    Article  Google Scholar 

  • United States Department of Energy (2005). Carbon sequestration: Technology Roadmap and Program Plan 2005. Retrieved from: http://www.fe.doe.gov/programs/sequestration/publications/programplans/2005/sequestrseque_roadmap_2005.pdf [Accessed: 28 February 2012].

  • Vachon, S., & Menz, F. C. (2006). The role of social, political, and economic interests in promoting state green electricity policies. Environmental Science and Policy, 9(7–8), 652–662.

    Article  Google Scholar 

  • van Rooijen, S. N., & van Wees, M. T. (2006). Green electricity policies in the Netherlands: An analysis of policy decisions. Energy Policy, 34(1), 60–71.

    Article  Google Scholar 

  • Venkatesh, V., Morris, M. G., et al. (2003). User acceptance of information technology: Toward a unified view. Management Information Systems Quarterly, 27, 425–478.

    Google Scholar 

  • Wakeland, W. (2006). WebCT system dynamics course material. Portland: Portland State University.

    Google Scholar 

  • Wang, P., Cockburn, I. M., & Puterman, M. L. (1998). Analysis of patent data—a mixed-poisson-regression-model approach. Journal of Business and Economic Statistics, 16(1), 27–41.

    Google Scholar 

  • Warr, B., & Ayres, R. (2006). REXS: A forecasting model for assessing the impact of natural resource consumption and technological change on economic growth. Structural Change and Economic Dynamics, 17(3), 329–378.

    Article  Google Scholar 

  • Watanabe, C., Tsuji, Y. S., & Griffy-Brown, C. (2001). Patent statistics: deciphering a ‘real’ versus a ‘pseudo’ proxy of innovation. Technovation, 21(12), 783–790.

    Article  Google Scholar 

  • Watts, R. J., & Porter, A. L. (1997). Innovation forecasting. Technological Forecasting and Social Change, 56(1), 25–48.

    Article  Google Scholar 

  • Young, P. (1993). Technological growth curves: A competition of forecasting models. Technological Forecasting and Social Change, 44(4), 375–389.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tugrul Daim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Daim, T., Cowan, K., Wakeland, W., Fallah, H., Holahan, P. (2013). Forecasting the Adoption of Emerging Energy Technologies: Managing Climate Change, Governance and Evolving Social Values. In: Knieling, J., Leal Filho, W. (eds) Climate Change Governance. Climate Change Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29831-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29831-8_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29830-1

  • Online ISBN: 978-3-642-29831-8

  • eBook Packages: Business and EconomicsEconomics and Finance (R0)

Publish with us

Policies and ethics