Skip to main content

Nahrungsbestandteile

  • Chapter
  • First Online:
Ernährungsmedizin Pädiatrie
  • 8118 Accesses

Zusammenfassung

Nahrung ist aus verschiedenen Bestandteilen (Hauptbestandteile: Wasser , Kohlenhydrate , Proteine , Lipide , Elektrolyte , Vitamine , Spurenelemente und Ballaststoffe ) zusammengesetzt. Bedingt durch die verfügbaren Lebensmittel, stehen Kohlenhydrate, Proteine, Lipide in einem bestimmten Verhältnis zueinander. Dieses Verhältnis ist in gewissen Grenzen individuell, kultur- und altersabhängig.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Adjei AA, Yamamoto S (1995) A dietary nucleoside-nucleotide mixture inhibits endotoxin-induced bacterial translocation in mice fed protein-free diet. J Nutr 125: 42–48

    PubMed  CAS  Google Scholar 

  • Adolph M, Heller AR, Koch T, Koletzko B, Kreymann KG, Krohn K, Pscheidl E, Senkal M (2009) Lipid emulsions - Guidelines on Parenteral Nutrition, Chapter 6. Working group for developing the guidelines for parenteral nutrition of The German Association for Nutritional Medicine. Ger Med Sci. 18;7:Doc22. Review.

    Google Scholar 

  • Aggett PJ (2000) Trace elements of the micropremie. Clin Perinatol 27: 119–129, vi

    Article  PubMed  CAS  Google Scholar 

  • AWMF S1 Leitlinie der Gesellschaft für Pädiatrische Gastroenterologie und Ernährung (GPGE) Akute infektiöse Gastroenteritis (Stand 2008)

    Google Scholar 

  • Baumgart S (1982) Radiant energy and insensible water loss in the premature newborn infant nursed under a radiant warmer. Clin Perinatol 9: 483–503

    PubMed  CAS  Google Scholar 

  • Baumgart S (1985) Partitioning of heat losses and gains in premature newborn infants under radiant warmers. Pediatrics 75: 89–99

    PubMed  CAS  Google Scholar 

  • Baumgart S, Engle WD, Fox WW, Polin RA (1981) Radiant warmer power and body size as determinants of insensible water loss in the critically ill neonate. Pediatr Res 15: 1495–1499

    Article  PubMed  CAS  Google Scholar 

  • Bausen C, Jochum F, Fusch C (2002) Perinatale Dermatitis durch Zinkmangel bei einem ehemaligen Frühgeborenen (25 + 1 SSW), Mengen und Spurenelemente. In: Anke M, Müller R, Schäfer U, Stoeppler M (Hrsg) Mengen- und Spurenelemente. Schubert, Leipzig, S 1018–1022

    Google Scholar 

  • Beale EF, Nelson RM, Bucciarelli RL, Donnelly WH, Eitzman DV (1979) Intrahepatic cholestasis associated with parenteral nutrition in premature infants. Pediatrics 64: 342–347

    PubMed  CAS  Google Scholar 

  • Beath SV, Davies P, Papadopoulou A et al. (1996)Parenteral nutrition-related cholestasis in postsurgical neonates: multivariate analysis of risk factors. J Pediatr Surg 31: 604–606

    Article  PubMed  CAS  Google Scholar 

  • Behal RH, Buxton DB, Robertson JG, Olson MS (1993) Regulation of the pyruvate dehydrogenase multienzyme complex. Annu Rev Nutr 13: 497–520

    Article  PubMed  CAS  Google Scholar 

  • Beisel WR, Edelman R, Nauss K, Suskind RM (1981) Single-nutrient effects on immunologic functions. Report of a workshop sponsored by the Department of Food and Nutrition and its nutrition advisory group of the American Medical Association. JAMA 245: 53–58

    Article  PubMed  CAS  Google Scholar 

  • Bell EF, Neidich GA, Cashore WJ, Oh W (1979) Combined effect of radiant warmer and phototherapy on insensible water loss in low-birth-weight infants. J Pediatr 94: 810–813

    Article  PubMed  CAS  Google Scholar 

  • Berkner KL (2000) The vitamin K-dependent carboxylase. J Nutr 130: 1877–1880

    PubMed  CAS  Google Scholar 

  • Berry-Kravis E, Dawson G (1985) Possible role of gangliosides in regulating an adenylate cyclase-linked 5-hydroxytryptamine (5-HT1) receptor. J Neurochem 45: 1739–1747

    Article  PubMed  CAS  Google Scholar 

  • Besselink MG, Van Saanvoort HC, Buskens E et al. (2008) Probiotic prophylaxis in predicted severe acute pancreatitis: a randomized, double-blind, placebo-controlled trial. Lancet 371:651-659

    Article  PubMed  Google Scholar 

  • Binder ND, Raschko PK, Benda GI, Reynolds JW (1989) Insulin infusion with parenteral nutrition in extremely low birth weight infants with hyperglycemia. J Pediatr 114: 273–280

    Article  PubMed  CAS  Google Scholar 

  • Boehles H (1991) Ernährungsstörungen im Kindesalter. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 26

    Google Scholar 

  • Braegger C, Chmielewska A, Decsi T, Kolacek S et al. (2011) Supplementation of infant formula with probiotics and/or prebiotics: a systematic review and comment by the ESPGHAN Committee on Nutrition. J Ped Gastroenterol Nutr 52:238-250

    Article  Google Scholar 

  • Brown MR, Thunberg BJ, Golub L, Maniscalco WM, Cox C, Shapiro DL (1989) Decreased cholestasis with enteral instead of intravenous protein in the very low-birth-weight infant. J Pediatr Gastroenterol Nutr 9: 21–27

    PubMed  CAS  Google Scholar 

  • Brück K (1987) Heat production and temperature regulation. In: Stave U (ed) Perinatal physiology. Plenum Medical Publishing, New York, pp 455

    Google Scholar 

  • Brück K (1992) Neonatal thermal regulation. In: Polin RA, Fox WW (eds) Fetal and neonatal physiology. Saunders, Philadelphia, pp 488–514

    Google Scholar 

  • Brunton JA, Ball RO, Pencharz PB (2000) Current total parenteral nutrition solutions for the neonate are inadequate. Curr Opin Clin Nutr Metab Care 3: 299–304

    Article  PubMed  CAS  Google Scholar 

  • Burton GW, Traber MG (1990) Vitamin E: antioxidant activity, biokinetics, and bioavailability. Annu Rev Nutr 10: 357–382

    Article  PubMed  CAS  Google Scholar 

  • Catzeflis C, Schutz Y, Micheli JL, Welsch C, Arnaud MJ, Jequier E (1985) Whole body protein synthesis and energy expenditure in very low birth weight infants. Pediatr Res 19: 679–687

    Article  PubMed  CAS  Google Scholar 

  • Cheng HM, Johnson PM (1985) A description of human placental syncytiotrophoblast membrane glycosphingolipids. Placenta 6: 229–238

    Article  PubMed  CAS  Google Scholar 

  • Chessex P, Zebiche H, Pineault M, Lepage D, Dallaire L (1985) Effect of amino acid composition of parenteral solutions on nitrogen retention and metabolic response in very-low-birth weight infants. J Pediatr 106: 111–117

    Article  PubMed  CAS  Google Scholar 

  • Chytil F (1992) The lungs and vitamin A. Am J Physiol 262: L517–527

    PubMed  CAS  Google Scholar 

  • Ciardelli R, Haumont D, Gnat D, Vertongen F, Delange F (2002) The nutritional iodine supply of Belgian neonates is still insufficient. Eur J Pediatr 161: 519–523

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove M (1998) Perinatal and infant nutrition. Nucleotides. Nutrition 14: 748–751

    CAS  Google Scholar 

  • Cowett RM, Andersen GE, Maguire CA, Oh W (1988) Ontogeny of glucose homeostasis in low birth weight infants. J Pediatr 112: 462–465

    Article  PubMed  CAS  Google Scholar 

  • DACH (2000) Referenzwerte für die Nährstoffzufuhr. Umschau/Braus, Frankfurt/Main

    Google Scholar 

  • Deutsche Gesellschaft für Ernährung (1991) Empfehlungen für die Nährstoffzufuhr, 5 Aufl. Umschau, Frankfurt

    Google Scholar 

  • Dorner K, Dziadzka S, Hohn A, Sievers E, Oldigs HD, Schulz-Lell G, Schaub J (1989) Longitudinal manganese and copper balances in young infants and preterm infants fed on breast-milk and adapted cow‘s milk formulas. Br J Nutr 61: 559–572

    Article  PubMed  CAS  Google Scholar 

  • Duffy B, Gunn T, Collinge J, Pencharz P (1981) The effect of varying protein quality and energy intake on the nitrogen metabolism of parenterally fed very low birthweight (less than 1,600 g) infants. Pediatr Res 15: 1040–1044

    Article  PubMed  CAS  Google Scholar 

  • Dweck HS, Cassady G (1974) Glucose intolerance in infants of very low birth weight. I. Incidence of hyperglycemia in infants of birth weights 1,100 grams or less. Pediatrics 53: 189–195

    PubMed  CAS  Google Scholar 

  • Elmadfa I, Leitzmann C (Hrsg) (1998) Ernährung des Menschen, 3. Aufl. Ulmer, Stuttgart, S 200

    Google Scholar 

  • FAO/WHO (2001). Evaluation of health and nutritional properties of probiotics in food, including powder milk with live lactic acid bacteria. Food and Agriculture Organization of the United Nations and World Health Organisation Expert Consultation Report

    Google Scholar 

  • Farrag HM, Nawrath LM, Healey JE, Dorcus EJ, Rapoza RE, Oh W, Cowett RM (1997) Persistent glucose production and greater peripheral sensitivity to insulin in the neonate vs. the adult. Am J Physiol 272: E86–93

    PubMed  CAS  Google Scholar 

  • Ferrari G, Anderson BL, Stephens RM, Kaplan DR, Greene LA (1995) Prevention of apoptotic neuronal death by GM1 ganglioside. Involvement of Trk neurotrophin receptors. J Biol Chem 270: 3074–3080

    Article  PubMed  CAS  Google Scholar 

  • Fotherby MD, Williams JC, Forster LA, Craner P, Ferns GA (2000) Effect of vitamin C on ambulatory blood pressure and plasma lipids in older persons. J Hypertens 18: 411–415

    Article  PubMed  CAS  Google Scholar 

  • Frank J (2002) Vitamin B12. In: Biesalski HK, Köhrle J, Schümann K (Hrsg) Vitamine, Spurenelemente und Mineralstoffe. Thieme, Stuttgart

    Google Scholar 

  • Friis-Hansen B (1982) Water – the major nutrient. Acta Paediatr Scand Suppl 299: 11–16

    Article  PubMed  CAS  Google Scholar 

  • Furst P, Pogan K, Stehle P (1997) Glutamine dipeptides in clinical nutrition. Nutrition 13: 731–737

    Article  PubMed  CAS  Google Scholar 

  • Fusch C, Jochum F (2005) Water, sodium, potassium, and chloride. In: Tsang RC, Lucas A, Uauy R, Zlotkin S (eds) Nutritional needs of the preterm infant. Wiliams & Wilkins, Baltimore

    Google Scholar 

  • Gaull G, Sturman JA, Raiha NC (1972) Development of mammalian sulfur metabolism: absence of cystathionase in human fetal tissues. Pediatr Res 6: 538–547

    Article  PubMed  CAS  Google Scholar 

  • German Nutrition Society (DGE), Austrian Nutrition Society (ÖGE), Swiss Society for Nutritional Research (SGE), and Swiss Nutrition Association (SVE) (2002) Reference values for nutrient intake, 1st edn. Umschau Braus, Frankfurt/Main

    Google Scholar 

  • Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125: 1401–1412

    PubMed  CAS  Google Scholar 

  • Goudoever JB van, Sulkers EJ, Timmerman M, Huijmans JG, Langer K, Carnielli VP, Sauer PJ (1994) Amino acid solutions for premature neonates during the first week of life: the role of N-acetyl-L-cysteine and N-acetyl-L-tyrosine. JPEN J Parenter Enteral Nutr 18: 404–408

    Article  PubMed  Google Scholar 

  • Greene HL, Hambidge KM, Schanler R, Tsang RC (1988) Guidelines for the use of vitamins, trace elements, calcium, magnesium, and phosphorus in infants and children receiving total parenteral nutrition: report of the Subcommittee on Pediatric Parenteral Nutrient Requirements from the Committee on Clinical Practice Issues of the American Society for Clinical Nutrition. Am J Clin Nutr 48: 1324–1342

    PubMed  CAS  Google Scholar 

  • Hammarlund K, Sedin G, Stromberg B (1983) Transepidermal water loss in newborn infants. VIII. Relation to gestational age and post-natal age in appropriate and small for gestational age infants. Acta Paediatr Scand 72: 721–728

    Article  PubMed  CAS  Google Scholar 

  • Hammerman C, Aramburo MJ (1988) Decreased lipid intake reduces morbidity in sick premature neonates. J Pediatr 113: 1083–1088

    Article  PubMed  CAS  Google Scholar 

  • Haumont D, Deckelbaum RJ, Richelle M, Dahlan W, Coussaert E, Bihain BE, Carpentier YA (1989) Plasma lipid and plasma lipoprotein concentrations in low birth weight infants given parenteral nutrition with twenty or ten percent lipid emulsion. J Pediatr 115: 787–793

    Article  PubMed  CAS  Google Scholar 

  • Heird WC, Dell RB, Helms RA, Greene HL, Ament ME, Karna P, Storm MC (1987) Amino acid mixture designed to maintain normal plasma amino acid patterns in infants and children requiring parenteral nutrition. Pediatrics 80: 401–408

    PubMed  CAS  Google Scholar 

  • Hey EN, Katz G (1969) Evaporative water loss in the new-born baby. J Physiol 200: 605–619

    PubMed  CAS  Google Scholar 

  • Holt LE (1967) Amino acid requirements of infants. Curr Ther Res Clin Exp 9 Suppl: 149–156

    Google Scholar 

  • Hoyos AB (1999) Reduced incidence of necrotizing enterocolitis associated with enteral administration of Lactobacillus acidophilus and Bifidobacterium infantis to neonates in an intensive care unit. Int J Infect Dis 3: 197–202

    Article  PubMed  CAS  Google Scholar 

  • Huang JS, Bousvaros A, Lee JW, Diaz A, Davidson EJ (2002) Effect of prebiotic use in acute diarrhea in children: a meta-analysis. Dig Dis Sci 47(11):2625-2634

    Article  PubMed  CAS  Google Scholar 

  • Idota T, Kawakami H (1995) Inhibitory effects of milk gangliosides on the adhesion of Escherichia coli to human intestinal carcinoma cells. Biosci Biotechnol Biochem 59: 69–72

    Article  PubMed  CAS  Google Scholar 

  • Innis SM, Allardyce DB (1983) Possible biotin deficiency in adults receiving long-term total parenteral nutrition. Am J Clin Nutr 37: 185–187

    PubMed  CAS  Google Scholar 

  • Jacobs H (2002) Vitamin D. In: Biesalski HK, Köhrle J, Schümann K (Hrsg) Vitamine, Spurenelemente und Mineralstoffe. Thieme, Stuttgart

    Google Scholar 

  • Jhaveri MK, Kumar SP (1987) Passage of the first stool in very low birth weight infants. Pediatrics 79: 1005–1007

    PubMed  CAS  Google Scholar 

  • Jochum F, Lombeck I (2000) Genetic defects related to metals other than copper. In: Fernandes J, Saudubray JM, Berghe B van den (eds) Inborn metabolic diseases – diagnosis and treatment. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Jochum F, Fuchs A, Menzel H, Lombeck I (1995) Selenium in German infants fed breast milk or different formulas. Acta Paediatr 84: 859–862

    Article  PubMed  CAS  Google Scholar 

  • Jochum F, Fuchs A, Cser A, Menzel H, Lombeck I (1995) Trace mineral status of full-term infants fed human milk, milk-based formula or partially hydrolysed whey protein formula. Analyst 120: 905–909

    Article  PubMed  CAS  Google Scholar 

  • Kleinman RE, American Academy of Pediatrics Committee on Nutrition (1998) Pediatric nutrition handbook. American Academy of Pediatrics, Elk Grove Village, pp 55–87

    Google Scholar 

  • Koh TH, Aynsley-Green A, Tarbit M, Eyre JA (1988) Neural dysfunction during hypoglycaemia. Arch Dis Child 63: 1353–1358

    Article  PubMed  CAS  Google Scholar 

  • Koletzko B, Goulet O, Hunt J, Krohn K, Shamir R; Parenteral Nutrition Guidelines Working Group; European Society for Clinical Nutrition and Metabolism; European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN); European Society of Paediatric Research (ESPR) (2005) Guidelines on Paediatric Parenteral Nutrition of the European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and the European Society for Clinical Nutrition and Metabolism (ESPEN), Supported by the European Society of Paediatric Research (ESPR). J Pediatr Gastroenterol Nutr. 41 Suppl 2: S1-87.

    Article  PubMed  Google Scholar 

  • Koletzko B, Sinclair A (1999) Long-chain polyunsaturated fatty acids in diets for infants: choices for recommending and regulating bodies and for manufacturers of dietary products. Lipids 34: 215–220

    Article  PubMed  CAS  Google Scholar 

  • Koletzko B, Agostoni C, Carlson SE et al. (2001) Long chain polyunsaturated fatty acids (LC-PUFA) and perinatal development. Acta Paediatr 90: 460–464

    Article  PubMed  CAS  Google Scholar 

  • Kovar IZ, Saini J, Morgan JB (1989) The sick very low birthweight infant fed by parenteral nutrition: studies of nitrogen and energy. Eur J Clin Nutr 43: 339–346

    PubMed  CAS  Google Scholar 

  • Leake RD, Zakauddin S, Trygstad CW, Fu P, Oh W (1976) The effects of large volume intravenous fluid infusion on neonatal renal function. J Pediatr 89: 968–972

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Oe T, Blair IA (2001) Vitamin C-induced decomposition of lipid hydroperoxides to endogenous genotoxins. Science 292: 2083–2086

    Article  PubMed  CAS  Google Scholar 

  • Levine A, Maayan A, Shamir R, Dinari G, Sulkes J, Sirotta L (1999) Parenteral nutrition-associated cholestasis in preterm neonates: evaluation of ursodeoxycholic acid treatment. J Pediatr Endocrinol Metab 12: 549–553

    Article  PubMed  CAS  Google Scholar 

  • Lorenzen A, Stannek C, Lang H, Andrianov V, Kalvinsh I, Schwabe U (2001) Characterization of a G protein-coupled receptor for nicotinic acid. Mol Pharmacol 59: 349–357

    PubMed  CAS  Google Scholar 

  • Louik C, Mitchell AA, Epstein MF, Shapiro S (1985) Risk factors for neonatal hyperglycemia associated with 10% dextrose infusion. Am J Dis Child 139: 783–786

    PubMed  CAS  Google Scholar 

  • Lucas A, Morley R, Cole TJ (1988) Adverse neurodevelopmental outcome of moderate neonatal hypoglycaemia. BMJ 297: 1304–1308

    Article  PubMed  CAS  Google Scholar 

  • Manach C, Wiliamson G, Morand C, Scalbert A, Remsy C (2005) Bioavailability and bioefficacy of polyphenols in humans. Review of 97 bioavailability studies. Am.J.Clin.Nutr. 81(Suppl.1): 230S-242S

    PubMed  CAS  Google Scholar 

  • Martin D (1983) Wasser und anorganische Elemente. In: Harpner H, Martin D, Mayes P, Rodwell V (eds) Medizinische Biochemie. Springer, Berlin Heidelberg New York, S 657–671

    Google Scholar 

  • Martinez-Augustin O, Boza JJ, Pino JI del, Lucena J, Martinez-Valverde A, Gil A (1997a) Dietary nucleotides might influence the humoral immune response against cow‘s milk proteins in preterm neonates. Biol Neonate 71: 215–223

    Article  CAS  Google Scholar 

  • Martinez-Augustin O, Boza JJ, Navarro J, Martinez-Valverde A, Araya M, Gil A (1997b) Dietary nucleotides may influence the humoral immunity in immunocompromised children. Nutrition 13: 465–469

    Article  CAS  Google Scholar 

  • Meinardus P (2012) Flavoniodgehalt in der Muttermilch nach Intervention mit Sojagetränk oder entkoffeiniertem schwarzen Tee. Dissertation. Rheinische Friedrich-Wilhelms-Universität zu Bonn 1-98.

    Google Scholar 

  • Meißner D (2002) Chrom. In: Biesalski HK, Köhrle J, Schümann K (Hrsg) Vitamine, Spurenelemente und Mineralstoffe. Thieme, Stuttgart

    Google Scholar 

  • Merian E (1984) Metalle in der Umwelt. Verlag Chemie, Weinheim

    Google Scholar 

  • Obladen M, Loui A, Kampmann W, Renz H (1998) Zinc deficiency in rapidly growing preterm infants. Acta Paediatr 87: 685–691

    Article  PubMed  CAS  Google Scholar 

  • Olney JW, Ho OL, Rhee V (1973) Brain-damaging potential of protein hydrolysates. N Engl J Med 289: 391–395

    Article  PubMed  CAS  Google Scholar 

  • Olson JA (2001) Vitamin A. In: Rucker RB, Suttie JW, McCormick DB, Machlin LJ (eds) Handbook of vitamins. Dekker, New York

    Google Scholar 

  • Oshiro M, Mimura S, Hayakawa M, Watanabe K (2001) Plasma and erythrocyte levels of trace elements and related antioxidant enzyme activities in low-birthweight infants during the early postnatal period. Acta Paediatr 90: 1283–1287

    Article  PubMed  CAS  Google Scholar 

  • Otnaess AB, Laegreid A, Ertresvag K (1983) Inhibition of enterotoxin from Escherichia coli and Vibrio cholerae by gangliosides from human milk. Infect Immun 40: 563–569

    PubMed  CAS  Google Scholar 

  • Perlman M, Chan WY, Ramadan TZ, McCaffree MA, Rennert OM (1982) Serum copper and ceruloplasmin in preterm infants: prospective study. J Am Coll Nutr 1: 155–163

    PubMed  CAS  Google Scholar 

  • Pickering LK, Granoff DM, Erickson JR et al. (1998) Modulation of the immune system by human milk and infant formula containing nucleotides. Pediatrics 101: 242–249

    Article  PubMed  CAS  Google Scholar 

  • Pildes RS, Pyati SP (1986) Hypoglycemia and hyperglycemia in tiny infants. Clin Perinatol 13: 351–375

    PubMed  CAS  Google Scholar 

  • Poindexter BB, Ehrenkranz RA, Stoll BJ et al. (2003) Effect of parenteral glutamine supplementation on plasma amino acid concentrations in extremely low-birth-weight infants. Am J Clin Nutr 77: 737–743

    PubMed  CAS  Google Scholar 

  • Prokazova NV, Bergelson LD (1994) Gangliosides and atherosclerosis. Lipids 29: 1–5

    Article  PubMed  CAS  Google Scholar 

  • Raiha NC (1974) Biochemical basis for nutritional management of preterm infants. Pediatrics 53: 147–156

    PubMed  CAS  Google Scholar 

  • Rayyan M, Devlieger H, Jochum F, Allegaert K (2012) Short-term use of parenteral nutrition with a lipid emulsion containing a mixture of soybean oil, olive oil, medium-chain triglycerides, and fish oil: a randomized double-blind study in preterm infants. JPEN J Parenter Enteral Nutr. 36(1 Suppl):81S-94S.

    Article  PubMed  CAS  Google Scholar 

  • Reiss I, Anke M (2002) Molybden. In: Biesalski HK, Köhrle J, Schümann K (Hrsg) Vitamine, Spurenelemente und Mineralstoffe. Thieme, Stuttgart

    Google Scholar 

  • Rigo J, Senterre J (1977) Is taurine essential for the neonates? Biol Neonate 32: 73–76

    Article  PubMed  CAS  Google Scholar 

  • Rigo J, Senterre J (1987) Significance of plasma amino acid pattern in preterm infants. Biol Neonate 52 [Suppl 1]: 41–49

    Article  PubMed  CAS  Google Scholar 

  • Rosner H (1982) Ganglioside changes in the chicken optic lobes as biochemical indicators of brain development and maturation. Brain Res 236: 49–61

    Article  PubMed  CAS  Google Scholar 

  • Rueda R, Tabsh K, Ladisch S (1993) Detection of complex gangliosides in human amniotic fluid. FEBS Lett 328: 13–16

    Article  PubMed  CAS  Google Scholar 

  • Rueda R, Puente R, Hueso P, Maldonado J, Gil A (1995) New data on content and distribution of gangliosides in human milk. Biol Chem Hoppe Seyler 376: 723–727

    Article  PubMed  CAS  Google Scholar 

  • Saner G, Dagoglu T, Ozden T (1985) Hair manganese concentrations in newborns and their mothers. Am J Clin Nutr 41: 1042–1044

    PubMed  CAS  Google Scholar 

  • Schmidt E (1981) Empfehlungen für die Ernährung des Säuglings einschließlich Beikost. Paediatr Prax 25: 567–579

    Google Scholar 

  • Schulze J, Sonnenborn U, Ölschläger T, Kruis W (Hrsg) (2008) Probiotika: Mikroökologie, Mikrobiologie, Qualität, Sicherheit und gesundheitliche Effekte. Hippokrates Verlag, Stuttgart

    Google Scholar 

  • Seibold-Weiger K, Wollmann H, Rendl J, Ranke M, Speer C (1999) Jodkonzentration in der Muttermilch bei Muttern von Fruhgeborenen. Z Geburtshilfe Neonatol 203: 81–85

    PubMed  CAS  Google Scholar 

  • Shearer MJ (2000) Role of vitamin K and Gla proteins in the pathophysiology of osteoporosis and vascular calcification. Curr Opin Clin Nutr Metab Care 3: 433–438

    Article  PubMed  CAS  Google Scholar 

  • Shrivastava R, Upreti RK, Seth PK, Chaturvedi UC (2002) Effects of chromium on the immune system. FEMS Immunol Med Microbiol 34: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Sinclair JC (1976) Metabolic rate and temperature control. In: Smith CA, Nelson N (eds) The physiology of the newborn infant. Thomas, Springfield, pp 354–415

    Google Scholar 

  • Spiegel S, Merrill AH (1996) Sphingolipid metabolism and cell growth regulation. FASEB J 10: 1388–1397

    PubMed  CAS  Google Scholar 

  • Sulyok E, Jequier E, Prod’hom LS (1973) Respiratory contribution to the thermal balance of the newborn infant under various ambient conditions. Pediatrics 51: 641–650

    PubMed  CAS  Google Scholar 

  • Szajewska H, Mrukowicz JZ (2001) Probiotics in the treatment and prevention of acute infectious diarrhea in infants and children: a systematic review of published randomized, double-blind, placebo-controlled trials. J Pediatr Gastroenterol Nutr 33 [Suppl 2]: S17–25

    Article  PubMed  CAS  Google Scholar 

  • Szajewska H, Ruszczynski M, Radzikowski A (2006) Probiotics in the prevention of antibiotic-associated diarrhea in children: a meta-analysis of randomized controlled trials. J Pediatr 149:367-372

    Article  PubMed  Google Scholar 

  • Taki T, Matsuo K, Yamamoto K, Matsubara T, Hayashi A, Abe T, Matsumoto M (1988) Human placenta gangliosides. Lipids 23: 192–198

    Article  PubMed  CAS  Google Scholar 

  • Talbott MC, Miller LT, Kerkvliet NI (1987) Pyridoxine supplementation: effect on lymphocyte responses in elderly persons. Am J Clin Nutr 46: 659–664

    PubMed  CAS  Google Scholar 

  • Tanaka R, Mutai M (1980) Improved medium for selective isolation and enumeration of Bifidobacterium. Appl Environ Microbiol 40: 866–869

    PubMed  CAS  Google Scholar 

  • Thureen PJ, Melara D, Fennessey PV, Hay WW (2003) Effect of low versus high intravenous amino acid intake on very low birth weight infants in the early neonatal period. Pediatr Res 53: 24–32

    Article  PubMed  CAS  Google Scholar 

  • Tsang R, Lucas A, Uaay R, Zlotkin S (eds) (1993) Nutritional needs of the preterm infant: scientific basis and practical guidelines. Williams & Wilkins, Baltimore

    Google Scholar 

  • Uauy R (1994) Nonimmune system responses to dietary nucleotides. J Nutr 124 [Suppl 1]: 157S–159S

    PubMed  CAS  Google Scholar 

  • Uauy R, Hoffman DR, Peirano P, Birch DG, Birch EE (2001) Essential fatty acids in visual and brain development. Lipids 36: 885–895

    Article  PubMed  CAS  Google Scholar 

  • Wasowicz W, Gromadzinska J, Szram K, Rydzynski K, Cieslak J, Pietrzak Z (2001) Selenium, zinc, and copper concentrations in the blood and milk of lactating women. Biol Trace Elem Res 79: 221–233

    Article  PubMed  CAS  Google Scholar 

  • Watzel B, Leitzmann C (2005) Bioaktive substanzen in Lebensmitteln. 3. Auflage Hippokrates Verlag, Stuttgart.

    Google Scholar 

  • Wauben I, Gibson R, Atkinson S (1999) Premature infants fed mothers’ milk to 6 months corrected age demonstrate adequate growth and zinc status in the first year. Early Hum Dev 54: 181–194

    Article  PubMed  CAS  Google Scholar 

  • Wheldon AE, Rutter N (1982) The heat balance of small babies nursed in incubators and under radiant warmers. Early Hum Dev 6: 131–143

    Article  PubMed  CAS  Google Scholar 

  • Williams PR, Oh W (1974) Effects of radiant warmer on insensible water loss in newborn infants. Am J Dis Child 128: 511–514

    PubMed  CAS  Google Scholar 

  • Willinger M, Schachner M (1980) GM1 ganglioside as a marker for neuronal differentiation in mouse cerebellum. Dev Biol 74: 101–117

    Article  PubMed  CAS  Google Scholar 

  • Winters RW (1973) Maintenance fluid therapy. In: Winters RW (ed) The body fluids in pediatrics. Little Brown, Boston, pp 113–133

    Google Scholar 

  • Wu PY, Hodgman JE (1974) Insensible water loss in preterm infants: changes with postnatal development and non-ionizing radiant energy. Pediatrics 54: 704–712

    PubMed  CAS  Google Scholar 

  • Yuasa H, Scheinberg DA, Houghton AN (1990) Gangliosides of T lymphocytes: evidence for a role in T-cell activation. Tissue Antigens 36: 47–56

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jochum, F., Nomayo, A. (2013). Nahrungsbestandteile. In: Jochum, F. (eds) Ernährungsmedizin Pädiatrie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29817-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29817-2_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29816-5

  • Online ISBN: 978-3-642-29817-2

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics