Skip to main content

Generalizing Distance Functions for Fuzzy c-Means Clustering

  • Chapter
  • First Online:
Advances in K-means Clustering

Part of the book series: Springer Theses ((Springer Theses))

  • 4514 Accesses

Abstract

Fuzzy \(c\)-means (FCM) is a well-known partitional clustering method, which allows an object to belong to two or more clusters with a membership grade between zero and one. Recently, due to the rich information conveyed by the membership grade matrix, FCM has been widely used in many real-world application domains where well-separated clusters are typically not available. In addition, people also recognize that the simple centroid-based iterative procedure of FCM is very appealing when dealing with large volume data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Banerjee, A., Merugu, S., Dhillon, I., Ghosh, J.: Clusteringwith bregman divergences. J. Mach. Learn. Res. 6, 1705–1749 (2005)

    MathSciNet  MATH  Google Scholar 

  • Bezdek, J.: A convergence theorem for the fuzzy isodata clustering algorithms. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-2(1), 1–8 (1980).

    Google Scholar 

  • Bezdek, J.: Pattern Recognition with Fuzzy Objective Function Algoritms. Plenum Press, New York (1981)

    Book  Google Scholar 

  • Bezdek, J., Hathaway, R., Huggins, V.: Parametric estimation for normal mixtures. Pattern Recognit. Lett. 3, 79–84 (1985)

    Article  MATH  Google Scholar 

  • Bobrowski, L., Bezdek, J.: C-means clustering with the \(l_1\) and \(l_\infty \) norms. IEEE Trans. Syst. Man Cybern. 21(3), 545–554 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  • Bregman, L.: The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7, 200–217 (1967)

    Article  Google Scholar 

  • Chen, L., Ng, R.: On the marriage of lp-norms and edit distance. In: Proceedings of the 13th International Conference on Very Large Data Bases, pp. 792–803. Toronto, Canada (2004).

    Google Scholar 

  • Dav\(\acute{e}\), R.: Characterization and detection of noise in clustering. Pattern Recognit. Lett. 12(11), 657–664 (1991).

    Google Scholar 

  • Dunn, J.: A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters. J. Cybern. 3, 32–57 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  • Flanders, H.: Differential Forms with Applications to the Physical Sciences. Dover Publications, New York (1989)

    MATH  Google Scholar 

  • Golub, G., van Loan, C.: Matrix Computations. Johns Hopkins, Baltimore (1996)

    MATH  Google Scholar 

  • Groll, L., Jakel, J.: A new convergence proof of fuzzy \(c\)-means. IEEE Trans. Fuzzy Syst. 13(5), 717–720 (2005)

    Article  Google Scholar 

  • Hathaway, R., Bezdek, J.: Local convergence of the fuzzy \(c\)-means algorithms. Pattern Recognit. 19, 477–480 (1986)

    Article  MATH  Google Scholar 

  • Hathaway, R., Bezdek, J.: Recent convergence results for the fuzzy c-means clustering algorithms. J. Classif. 5, 237–247 (1988)

    Article  MathSciNet  Google Scholar 

  • Hathaway, R., Bezdek, J., Tucker, W.: An improved convergence theory for the fuzzy c-means clustering algorithms. In: Bezdek, J. (ed.) Analysis of Fuzzy Information, vol. 3, pp. 123–131. CRC Press, Boca Raton (1987)

    Google Scholar 

  • Hathaway, R.J., Bezdek, J.C., Hu, Y.: Generalized fuzzy c-means clustering strategies using \(l_p\) norm distances. IEEE Trans. Fuzzy Syst. 8(5), 576–582 (2000)

    Article  Google Scholar 

  • Honda, K., Notsu, A., Ichihashi, H.: Fuzzy pca-guided robust k-means clustering. IEEE Trans. Fuzzy Syst. 18(1), 67–79 (2010)

    Article  Google Scholar 

  • Hoppner, F., Klawonn, F.: A contribution to convergence theory of fuzzy c-means and derivatives. IEEE Trans. Fuzzy Syst. 11(5), 682–694 (2003)

    Article  Google Scholar 

  • Hoppner, F., Klawonn, F., Kruse, R., Runkler, T.: Fuzzy Cluster Analysis. Wiley, New York (1999)

    Google Scholar 

  • Ismail, M., Selim, S.: Fuzzy \(c\)-means: optimality of solutions and effective termination of the algorithm. Pattern Recognit. 19, 481–485 (1984)

    Article  Google Scholar 

  • Jajuga, K.: \(l_1\) norm-based fuzzy clustering. Fuzzy Sets Syst. 39, 43–50 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Karoubi, M., Leruste, C.: Algebraic Topology via Differential Geometry. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  • Kersten, P.: Fuzzy order statistics and their application to fuzzy clustering. IEEE Trans. Fuzzy Syst. 7, 708–712 (1999)

    Article  Google Scholar 

  • Kim, T., Bezdek, J., Hathaway, R.: Optimality tests for fixed points of the fcm algorithm. Pattern Recognit. 21(6), 651–663 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Klawonn, F., Keller, A.: Fuzzy clustering based on modified distance measures. In: Proceedings of the 3rd International Symposium on Advances in, Intelligent Data Analysis, pp. 291–302 (1999).

    Google Scholar 

  • Leski, J.M.: Generalized weighted conditional fuzzy clustering. IEEE Trans. Fuzzy Syst. 11(6), 709–715 (2003)

    Article  Google Scholar 

  • Li, R., Mukaidono, M.: A maximum entropy to fuzzy clustering. In: Proceedings of 4th IEEE Internation Conference on Fuzzy Systems, pp. 2227–2232. Yokohama, Japan (1995).

    Google Scholar 

  • Luenberger, D., Ye, Y.: Linear and Nonlinear Programming, 3rd edn. Springer, New York (2008)

    MATH  Google Scholar 

  • MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297 (1967).

    Google Scholar 

  • Meila, M.: Comparing clusterings-an axiomatic view. In: Proceedings of the 22nd International Conference on, Machine Learning, pp. 577–584 (2005).

    Google Scholar 

  • Menard, M., Courboulay, V., Dardignac, P.: Possibistic and probabilistic fuzzy clustering: Unification within the framework of the nonextensive thermostatistics. Pattern Recognit. 36(6), 1325–1342 (2003)

    Article  MATH  Google Scholar 

  • Miyamoto, S., Agusta, Y.: An efficient algorithm for \(l_1\) fuzzy \(c\)-means and its termination. Control Cybern. 24(4), 421–436 (1995)

    MATH  Google Scholar 

  • Miyamoto, S., Ichihashi, H., Honda, K.: Algorithms for Fuzzy Clustering: Methods in c-Means Clustering with Applications. Springer, Berlin (2008)

    MATH  Google Scholar 

  • Miyamoto, S., Umayahara, K.: Fuzzy clustering by quadratic regularization. In: Proceedings of the 7th IEEE Internation Conference on Fuzzy Systems, pp. 394–1399 (1998).

    Google Scholar 

  • Ohashi, Y.: Fuzzy clustering and robust estimation. In: Proceedings of the 9th SAS Users Group International Meeting. Hollywood Beach, FL, USA (1984).

    Google Scholar 

  • Pedrycz, W.: Conditional fuzzy \(c\)-means. Pattern Recognit. Lett. 17, 625–632 (1996)

    Article  Google Scholar 

  • Pedrycz, W., Loia, V., Senatore, S.: Fuzzy clustering with viewpoints. IEEE Trans. Fuzzy Syst. 18(2), 274–284 (2010)

    Google Scholar 

  • Rose, K., Gurewitz, E., Fox, G.: A deterministic annealing approach to clustering. Pattern Recognit. Lett. 11, 589–594 (1990)

    Article  MATH  Google Scholar 

  • Selim, S., Ismail, M.: On the local optimality of the fuzzy isodata clustering algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 8, 284–288 (1986)

    Article  MATH  Google Scholar 

  • Sledge, I., Bezdek, J., Havens, T., Keller, J.: Relational generalizations of cluster validity indices. IEEE Trans. Fuzzy Syst. 18(4), 771–786 (2010)

    Article  Google Scholar 

  • Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-Wesley, Boston (2005)

    Google Scholar 

  • Teboulle, M.: A unified continuous optimization framework for center-based clustering methods. J. Mach. Learn. Res. 8, 65–102 (2007)

    MathSciNet  MATH  Google Scholar 

  • Tucker, W.: Counterexamples to the convergence theorem for fuzzy isodata clustering algorithm. In: Bezdek, J. (ed.) Analysis of Fuzzy Information, vol. 3, pp. 109–122. CRC Press, Boca Raton (1987)

    Google Scholar 

  • Wu, J., Xiong, H., Chen, J.: Adapting the right measures for k-means clustering. In: Proceedings of The 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 877–886 (2009).

    Google Scholar 

  • Wu, J., Xiong, H., Liu, C., Chen, J.: A generalization of distance functions for fuzzy \(c\)-means clustering with centroids of arithmetic means. IEEE Trans. Fuzzy Syst. (Forthcoming, 2012).

    Google Scholar 

  • Wu, K., Yang, M.: Alternative \(c\)-means clustering algorithms. Pattern Recognit. 35, 2267–2278 (2002)

    Article  MATH  Google Scholar 

  • Yang, M.: On a class of fuzzy classification maximum likelihood procedures. Fuzzy Sets Syst. 57, 365–375 (1993)

    Article  MATH  Google Scholar 

  • Yi, B.K., Faloutsos, C.: Fast time sequence indexing for arbitrary lp norms. In: Proceedings of the 26th International Conference on Very Large Data Bases, pp. 792–803. Cairo, Egypt (2000).

    Google Scholar 

  • Yu, J., Yang, M.S.: Optimality test for generalized fcm and its application to parameter selection. IEEE Trans. Fuzzy Syst. 13(1), 164–176 (2005)

    Article  Google Scholar 

  • Yu, J., Yang, M.S.: A generalized fuzzy clustering regularization model with optimality tests and model complexity analysis. IEEE Trans. Fuzzy Syst. 15(5), 904–915 (2007)

    Article  Google Scholar 

  • Zangwill, W.: Nonlinear Programming: A Unified Approach. Prentice-Hall, Englewood Cliffs (1969)

    MATH  Google Scholar 

  • Zhao, Y., Karypis, G.: Criterion functions for document clustering: experiments and analysis. Mach. Learn. 55(3), 311–331 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix

Appendix

As previously mentioned in Sect. 3.4, the degeneration of \(\varvec{U}\) may happen for GD-FCM using \(f^\phi _{II}\), although the probability of occurrence is extremely low for real-world data. Here, we provide a solution for this degeneration case and show how the global convergence of GD-FCM can still be guaranteed.

During a GD-FCM iteration, assume that we get \((\varvec{U}^{de},\varvec{ v}^{de})=T_{mf}(\bar{\varvec{U}},\bar{\varvec{ V}})\), where \(\varvec{U}^{de}\) is degenerate but \(\bar{\varvec{U}}\) is nondegenerate. Without loss of generality, suppose there is only one \(r\) such that \(u^{de}_{rk}=0~\forall ~k\). Then, we let \(\hat{\varvec{ v}}=(\hat{\varvec{ v}}_1,\hat{\varvec{ v}}_2,\ldots ,\hat{\varvec{ v}}_c)^T\) be

$$\begin{aligned} \left\{ \begin{array}{l} \hat{\varvec{{ v}}}_i=\varvec{ v}^{de}_{i},~\forall ~i\ne r,~{\mathrm and }\\ \hat{\varvec{ v}}_r=\varvec{x}\in {\mathrm Conv }(\fancyscript{X}),~\varvec{x}\ne \varvec{ v}^{de}_{r}. \end{array}\right. \end{aligned}$$
(3.44)

Next, we try to resume the iteration by having \(\hat{\varvec{U}}=F(\hat{\varvec{V}})\). If \(\hat{\varvec{U}}\) is nondegenerate, then we define \((\hat{\varvec{U}},\hat{\varvec{V}})\doteq T_{mf}(\bar{\varvec{U}},\bar{\varvec{V}})\), and resume the iteration based on \((\hat{\varvec{U}},\hat{\varvec{V}})\). Otherwise, we repeat choosing a new \(\varvec{x}\in {\mathrm Conv }(\fancyscript{X})\) for \(\hat{\varvec{v}}_r\) until we have a nondegenerate \(\hat{\varvec{U}}=F(\hat{\varvec{V}})\). Typically, we choose \(\varvec{x}\) from \(\fancyscript{X}\) to ensure that \(\exists ~k\) such that \(u^{de}_{rk}\ne 0\).

Now, we establish the descent theorem when there is degeneration. Assume that \((\bar{\varvec{U}},\bar{\varvec{V}})\) is not in \(\Omega ^{\prime }\) of Eq. (3.37). Since \(u^{de}_{rk}=0~\forall ~k\), we have \(J_{mf}(\varvec{U}^{de},\varvec{V}^{de})= J_{mf}(\varvec{U}^{de},\hat{\varvec{V}})\ge J_{mf}(\hat{\varvec{U}},\hat{\varvec{V}})\). Furthermore, by Theorem 3.6, we have \(J_{mf}(\bar{\varvec{U}},\bar{\varvec{V}})>J_{mf}(\varvec{U}^{de},\varvec{V}^{de})\), which implies that \(J_{mf}(\bar{\varvec{U}},\bar{\varvec{V}})>J_{mf}(\hat{\varvec{U}},\hat{\varvec{V}})\). The descent theorem therefore holds. In addition, since we can “skip” the degenerate solution by jumping from \((\bar{\varvec{U}},\bar{\varvec{V}})\) to \((\hat{\varvec{U}},\hat{\varvec{V}})\), we still have \(T_{mf}:M_{fc}\times \fancyscript{S}^c\mapsto M_{fc}\times \fancyscript{S}^c\), and the closeness of \(T_{mf}\) and the compactness of \(M_{fc}\times {\mathrm Conv }(\fancyscript{X})^c\) still hold. By assembling the above results, we again get the global convergence by Zangwill’s convergence theorem.

Finally, in case that we cannot find any \(\varvec{x}\in {\mathrm Conv }(\fancyscript{X})\) for \(\hat{\varvec{ v}}_r\) such that \(\hat{\varvec{U}}=F(\hat{\varvec{ V}})\) is nondegenerate, we simply return \((\bar{\varvec{U}},\bar{\varvec{ V}})\) as the solution.

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wu, J. (2012). Generalizing Distance Functions for Fuzzy c-Means Clustering. In: Advances in K-means Clustering. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29807-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29807-3_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29806-6

  • Online ISBN: 978-3-642-29807-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics