(α, δ)-Sleeves for Reconstruction of Rectilinear Building Facets

  • Marc van Kreveld
  • Thijs van LankveldEmail author
  • Maarten de Rie
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)


We introduce the concept of \((\alpha ,\delta )\)-sleeves as a variation on the well-known \(\alpha \)-shapes. The concept is used to develop a simple algorithm for constructing a rectilinear polygon inside a plane; such an algorithm can be used to delineate a building facet inside a single plane in 3D from a set of points obtained from LiDAR scanning. We explain the algorithm, analyse different parameter settings on artificial data, and show some results on LiDAR data.


Ground Truth Sampling Density LiDAR Data Simple Polygon Coverage Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research has been supported by the GATE project, funded by the Netherlands Organization for Scientific Research (NWO) and the Netherlands ICT Research and Innovation Authority (ICT Regie).


  1. Brenner C (2005) Building reconstruction from images and laser scanning. Int J Appl Earth Obs 6(3–4):187–198Google Scholar
  2. Buchin K, Meulemans W, Speckmann B (2011) A new method for subdivision simplification with applications to urban-area generalization. In: Proceedings SIGSPATIAL, pp 261–270Google Scholar
  3. Carlberg M, Andrews J, Gao P, Zakhor A (2009) Fast surface reconstruction and segmentation with ground-based and airborne lidar range data. Technical Report ADA538860, University of California at BerkeleyGoogle Scholar
  4. de Berg M, Cheong O, van Kreveld M, Overmars M (2008) Computational geometry-algorithms and aplications. Springer, BerlinGoogle Scholar
  5. Edelsbrunner H, Kirkpatrick DG, Seidel R (1983) On the shape of a set of points in the plane. IEEE Trans on Inf Theory 29(4):551–559CrossRefGoogle Scholar
  6. Furukawa Y, Curless B, Seitz SM, Szeliski R (2009) Manhattan-world stereo. In: IEEE Computer Society, pp 1422–1429Google Scholar
  7. Hershberger J, Snoeyink J (1994) Computing minimum length paths of a given homotopy class. Comp Geom 4:63–97CrossRefGoogle Scholar
  8. John Chance Land Surveys, Fugro (2009) Fli-map specifications.
  9. Marton ZC, Rusu RB, Beetz M (2009) On fast surface reconstruction methods for large and noisy point clouds. In: Proceedings ICRA, pp 2829–2834Google Scholar
  10. Mayer H (2005) Scale-spaces for generalization of 3D buildings. Int J Geogr Inf Sci 19:975–997CrossRefGoogle Scholar
  11. Regnauld N, Edwardes A, Barrault M (1999) Strategies in building generalisation: modelling the sequence, constraining the choice. In: Proceedings ICAGoogle Scholar
  12. Rottensteiner F (2003) Automatic generation of high-quality building models from lidar data. IEEE Comput Graphics Appl 23(6):42–50Google Scholar
  13. Ruas A (1999) Modèle de généralisation de données géographiques à base de contraintes et d’autonomie. PhD thesis, Université de Marne la ValléeGoogle Scholar
  14. Schnabel R, Wahl R, Klein R (2007) Efficient RANSAC for point-cloud shape detection. Comput Graphics Forum 26(2):214–226CrossRefGoogle Scholar
  15. Schwalbe E, Maas HG, Seidel F (2005) 3D building model generation from airborne laser scanner data using 2D GIS data and orthogonal point cloud projections. In: Proceedings ISPRS, pp 12–14Google Scholar
  16. Seitz S, Curless B, Diebel J, Scharstein D, Szeliski R (2006) A comparison and evaluation of multi-view stereo reconstruction algorithms. In: Proceedings CVPR, vol 1, pp 519–528Google Scholar
  17. Swan J, Anand S, Ware M, Jackson M (2007) Automated schematization for web service applications. In: Web and Wireless GISystems. LNCS 4857:216–226Google Scholar
  18. Tseng YH, Tang KP, Chou FC (2007) Surface reconstruction from LiDAR data with extended snake theory. In: Proceedings EMMCVPR, pp 479–492Google Scholar
  19. van Lankveld T, van Kreveld M, Veltkamp RC (2011) Identifying rectangles in laser range data for urban scene reconstruction. Comput Graph 35(3):719–725CrossRefGoogle Scholar
  20. Wolff A (2007) Drawing subway maps: a survey. Inform Forsch Entwickl 22(1):23–44Google Scholar
  21. Yap CK (1987) An \({O} (n \log n)\) algorithm for the Voronoi diagram of a set of simple curve segments. Discrete Comput Geom 2:365–393CrossRefGoogle Scholar
  22. You S, Hu J, Neumann U, Fox P (2003) Urban site modeling from LiDAR. In: Proceedings ICCSA. LNCS, vol 2669, pp 579–588Google Scholar
  23. Zhou QY, Neumann U (2008) Fast and extensible building modeling from airborne LiDAR data. In: Proceedings SIGSPATIAL, pp 1–8Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marc van Kreveld
    • 1
  • Thijs van Lankveld
    • 1
    Email author
  • Maarten de Rie
    • 1
  1. 1.Department of Information and Computing SciencesUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations