Skip to main content

(α, δ)-Sleeves for Reconstruction of Rectilinear Building Facets

  • Chapter
  • First Online:
Progress and New Trends in 3D Geoinformation Sciences

Abstract

We introduce the concept of \((\alpha ,\delta )\)-sleeves as a variation on the well-known \(\alpha \)-shapes. The concept is used to develop a simple algorithm for constructing a rectilinear polygon inside a plane; such an algorithm can be used to delineate a building facet inside a single plane in 3D from a set of points obtained from LiDAR scanning. We explain the algorithm, analyse different parameter settings on artificial data, and show some results on LiDAR data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Brenner C (2005) Building reconstruction from images and laser scanning. Int J Appl Earth Obs 6(3–4):187–198

    Google Scholar 

  • Buchin K, Meulemans W, Speckmann B (2011) A new method for subdivision simplification with applications to urban-area generalization. In: Proceedings SIGSPATIAL, pp 261–270

    Google Scholar 

  • Carlberg M, Andrews J, Gao P, Zakhor A (2009) Fast surface reconstruction and segmentation with ground-based and airborne lidar range data. Technical Report ADA538860, University of California at Berkeley

    Google Scholar 

  • de Berg M, Cheong O, van Kreveld M, Overmars M (2008) Computational geometry-algorithms and aplications. Springer, Berlin

    Google Scholar 

  • Edelsbrunner H, Kirkpatrick DG, Seidel R (1983) On the shape of a set of points in the plane. IEEE Trans on Inf Theory 29(4):551–559

    Article  Google Scholar 

  • Furukawa Y, Curless B, Seitz SM, Szeliski R (2009) Manhattan-world stereo. In: IEEE Computer Society, pp 1422–1429

    Google Scholar 

  • Hershberger J, Snoeyink J (1994) Computing minimum length paths of a given homotopy class. Comp Geom 4:63–97

    Article  Google Scholar 

  • John Chance Land Surveys, Fugro (2009) Fli-map specifications. http://www.flimap.com/site47.php

  • Marton ZC, Rusu RB, Beetz M (2009) On fast surface reconstruction methods for large and noisy point clouds. In: Proceedings ICRA, pp 2829–2834

    Google Scholar 

  • Mayer H (2005) Scale-spaces for generalization of 3D buildings. Int J Geogr Inf Sci 19:975–997

    Article  Google Scholar 

  • Regnauld N, Edwardes A, Barrault M (1999) Strategies in building generalisation: modelling the sequence, constraining the choice. In: Proceedings ICA

    Google Scholar 

  • Rottensteiner F (2003) Automatic generation of high-quality building models from lidar data. IEEE Comput Graphics Appl 23(6):42–50

    Google Scholar 

  • Ruas A (1999) Modèle de généralisation de données géographiques à base de contraintes et d’autonomie. PhD thesis, Université de Marne la Vallée

    Google Scholar 

  • Schnabel R, Wahl R, Klein R (2007) Efficient RANSAC for point-cloud shape detection. Comput Graphics Forum 26(2):214–226

    Article  Google Scholar 

  • Schwalbe E, Maas HG, Seidel F (2005) 3D building model generation from airborne laser scanner data using 2D GIS data and orthogonal point cloud projections. In: Proceedings ISPRS, pp 12–14

    Google Scholar 

  • Seitz S, Curless B, Diebel J, Scharstein D, Szeliski R (2006) A comparison and evaluation of multi-view stereo reconstruction algorithms. In: Proceedings CVPR, vol 1, pp 519–528

    Google Scholar 

  • Swan J, Anand S, Ware M, Jackson M (2007) Automated schematization for web service applications. In: Web and Wireless GISystems. LNCS 4857:216–226

    Google Scholar 

  • Tseng YH, Tang KP, Chou FC (2007) Surface reconstruction from LiDAR data with extended snake theory. In: Proceedings EMMCVPR, pp 479–492

    Google Scholar 

  • van Lankveld T, van Kreveld M, Veltkamp RC (2011) Identifying rectangles in laser range data for urban scene reconstruction. Comput Graph 35(3):719–725

    Article  Google Scholar 

  • Wolff A (2007) Drawing subway maps: a survey. Inform Forsch Entwickl 22(1):23–44

    Google Scholar 

  • Yap CK (1987) An \({O} (n \log n)\) algorithm for the Voronoi diagram of a set of simple curve segments. Discrete Comput Geom 2:365–393

    Article  Google Scholar 

  • You S, Hu J, Neumann U, Fox P (2003) Urban site modeling from LiDAR. In: Proceedings ICCSA. LNCS, vol 2669, pp 579–588

    Google Scholar 

  • Zhou QY, Neumann U (2008) Fast and extensible building modeling from airborne LiDAR data. In: Proceedings SIGSPATIAL, pp 1–8

    Google Scholar 

Download references

Acknowledgments

This research has been supported by the GATE project, funded by the Netherlands Organization for Scientific Research (NWO) and the Netherlands ICT Research and Innovation Authority (ICT Regie).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thijs van Lankveld .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van Kreveld, M., van Lankveld, T., de Rie, M. (2013). (α, δ)-Sleeves for Reconstruction of Rectilinear Building Facets. In: Pouliot, J., Daniel, S., Hubert, F., Zamyadi, A. (eds) Progress and New Trends in 3D Geoinformation Sciences. Lecture Notes in Geoinformation and Cartography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29793-9_13

Download citation

Publish with us

Policies and ethics