Geometric-Semantical Consistency Validation of CityGML Models

  • Detlev WagnerEmail author
  • Mark Wewetzer
  • Jürgen Bogdahn
  • Nazmul Alam
  • Margitta Pries
  • Volker Coors
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)


In many domains, data quality is recognized as a key factor for successful business and quality management is a mandatory process in the production chain. Automated domain-specific tools are widely used for validation of business-critical data. Although the workflow for 3D city models is well-established from data acquisition to processing, analysis and visualization, quality management is not yet a standard during this workflow. Erroneous results and application defects are among the consequences of processing data with unclear specification. We show that this problem persists even if data are standard compliant and develop systematic rules for the validation of geometric-semantical consistency. A test implementation of the rule set and validation results of real-world city models are presented to demonstrate the potential of the approach.


Geometric Error Object Constraint Language Building Part City Model Sharp Bend 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank the SIG-3D quality working group for fruitful discussion and the German Federal Ministry of Education and Research (BMBF) for funding of the project CityDoctor under provision number 17110B10.


  1. Attene M, Falcidieno B (2006) Remesh: an nteractive environment to edit and repair triangle meshes. In: IEEE international conference on shape modeling and applications. p 41Google Scholar
  2. Bogdahn J, Coors V (2010) Towards an automated healingof 3D urban models. In Kolbe TH, König G, Nagel C (eds) In: Proceedings of international conference on 3D geoinformation. International archives of photogrammetry, remote sensing and spatial information science. International conference on 3D geoinformation. Shaker Verlag, Aachen, Germany, pp 13–17Google Scholar
  3. Boguslawski P, Gold C, Ledoux H (2011) Modelling and analysing 3D buildings with a primal/dual data structure. ISPRS J Photogram Rem Sens 66(2):188–197CrossRefGoogle Scholar
  4. Borodin P, Novotni M, Klein R (2002) Progressive gap closing for mesh repairing. In: Vince J, Earnshaw R (eds) Advances in modelling, animation and rendering, Springer pp 201–213Google Scholar
  5. Butlin G, Stops C (1996) CAD data repair In: 5th international meshing roundtable. pp 7-12Google Scholar
  6. Coors V, Krämer M (2011) Integrating quality management into a 3D geospatial server. In: UDMS 2011. Urban Data Management Society. Delft, p 8Google Scholar
  7. CPA-Systems GmbH (2011) Available at:
  8. Elysium (2008) CADdoctor. Available at: Accessed 20 Jan, 2012
  9. Ghawana T, Zlatanova S (2010) Data consistency checks for building a 3D model: a case study of Technical University, Delft campus. Geospatial World, The Netherlands, p 4Google Scholar
  10. Gröger G, Coors V(2010) Rules for validating GML geometries in CityGML. Available at: Accessed 18 Jan 2012
  11. Gröger G, Plümer L (2009) How to achieve consistency for 3D city models. GeoInformatica 15(1):137–165CrossRefGoogle Scholar
  12. Gröger, G. et al (eds) (2008) OpenGIS city geography markup language (CityGML) encoding standard. Available at: Accessed 28 June 2011
  13. International Organization for Standardization (ISO) (2002) ISO 19113 standard: geographic information -- quality principles. Available at:
  14. International Organization for Standardization (ISO) (2003a) ISO 19114 standard: geographic information—quality evaluation procedures. Available at:
  15. International Organization for Standardization (ISO) (2003b) ISO/CD 19107, Geographic information—spatial schemaGoogle Scholar
  16. International Organization for Standardization (ISO) (2006) ISO/PAS 26183—SASIG product data quality guidelines for the global automotive industryGoogle Scholar
  17. International TechneGroup (2011) CADfix. Available at:
  18. Ju T (2009) Fixing geometric errors on polygonal models: a survey. J Comput Sci Technol 24(1):19–29CrossRefGoogle Scholar
  19. Karki S, Thompson R, McDougall K (2010) Data validation in a 3D cadastre. In Neutens T, Maeyer P (eds) Developments in 3D geo-Iinformation sciences. Lecture notes in geoinformation and cartography, Springer, Berlin, pp 92–122Google Scholar
  20. Kazar BM et al (2008) On valid and invalid three-dimensional geometries. In: Oosterom P et al (eds) Advances in 3D geoinformation systems. Springer, Berlin, pp 19–46 (Available at: Accessed 22 June 2011)CrossRefGoogle Scholar
  21. Ledoux H (2011) Topologically consistent 3D city models obtained by extrusion. Int J Geogr Inf Sci 25(4):557–574CrossRefGoogle Scholar
  22. Métral C, Falquet G, Cutting-Decelle AF (2009) Towards semantically enriched 3D citymodels: an ontology-based approach. In: Academic track of geoweb 2009—cityscapes, international archives of photogrammetry, remote sensing and spatial information sciences (ISPRS). Vancouver, CanadaGoogle Scholar
  23. Object Management Group (2011) OMG object constraint language (OCL). Available at: Accessed 20 Jan 2012
  24. van Oort P (2005) Spatial data quality: from description to application. Optima Grafische Communicatie, The NetherlandsGoogle Scholar
  25. Oosterom P, Quak W, Tilssen T (2005) About invalid, valid and clean polygons. In Fisher PF (ed) Developments in spatial data handling. 11th international symposium on spatial data handling. Leicester, UK: Springer, Berlin, pp 1–16. Available at:
  26. Open Geospatial Consortium (OGC) (2011) Data quality DWG. Available at: Accessed 19 Jan 2012
  27. Pelagatti G et al. (2009) From the conceptual design of spatial constraints to their implementation in real systems. In Proceedings of the 17th ACM SIGSPATIAL international conference on advances in geographic information systems. Seattle, pp 448-451, Nov 4-6Google Scholar
  28. Rocchini C et al (2004) The marching intersections algorithm for merging range images. Vis Comput 20:149–164CrossRefGoogle Scholar
  29. SIG-3D Quality Working Group (2012) Modellierungshandbuch Gebäude. Available at:
  30. Stadler A, Kolbe TH (2007) Spatio-semantic coherence in the integration of 3D city models. In: Proceedings of the 5th inter-national symposium on spatial data quality. Enschede. Available at: Stadler/SDQ2007_Stadler_Kolbe.pdf
  31. Thompson R, Oosterom P (2011) Modelling and validation of 3D cadastral objects. In: Zlatanova S et al (eds) Urban and regional data management–UDMS annual 2011. CRC Press, DelftGoogle Scholar
  32. Transcat PLM (2011) Q-Checker. Available at: (Accessed 24 Jan 2012
  33. T-Systems International (2011) VALIDAT. Available at: Accessed 24 Jan 2012
  34. Wöhler T, Pries M, Stark R (2009) Effiziente Verfahren zur Aufbereitung von Geometriemodellen für die virtuelle Absicherung. In 3. Symposium Geometrisches Modellieren, Visualisieren und Bildverarbeitung. StuttgartGoogle Scholar
  35. Yamakawa S, Shimada K (2009) Removing self intersections of a triangular mesh by edge swapping, edge hammering, and face lifting. In 18th international meshing roundtableGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Detlev Wagner
    • 1
    Email author
  • Mark Wewetzer
    • 2
  • Jürgen Bogdahn
    • 1
  • Nazmul Alam
    • 1
  • Margitta Pries
    • 2
  • Volker Coors
    • 1
  1. 1.HFT Stuttgart—University of Applied Sciences, Faculty CStuttgartGermany
  2. 2.Beuth Hochschule für Technik Berlin—University of Applied Sciences, Department IIBerlinGermany

Personalised recommendations