Skip to main content

Physiologische Grundlagen der Natürlichen Familienplanung

  • Chapter
  • First Online:
Natürliche Familienplanung heute

Zusammenfassung

Der weibliche Zyklus wird durch einen hormonellen Regelkreis gesteuert, der aus 3 Ebenen besteht: dem Hypothalamus, dem Hypophysenvorderlappen und den Ovarien. Der Hypothalamus integriert die neuronalen und endokrinen Signale des ZNS und kontrolliert auch die reproduktiven Funktionen. Er gibt pulsatil (etwa alle 1–2 h) das Gonadotropin-Releasing-Hormon (GnRH) in das Portalgefäßsystem der Hypophyse ab und stimuliert dadurch die gonadotropen Zellen des Hypophysenvorderlappens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.95
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Abraham GE, Odell WD, Swerdloff RS, Hopper K (1972) Simultaneous radioimmunoassay of plasma FSH, LH, progesterone, 17-hydroxyprogesterone, and estradiol-17 beta during the menstrual cycle. J Clin Endocrinol Metab 34: 312-8

    Article  PubMed  CAS  Google Scholar 

  2. Adashi EY (1994) Endocrinology of the ovary. Hum Reprod 9: 815-27

    Article  PubMed  CAS  Google Scholar 

  3. Baerwald AR, Adams GP, Pierson RA (2003) Characterization of ovarian follicular wave dynamics in women. Biol Reprod 69: 1023-31

    Article  PubMed  CAS  Google Scholar 

  4. Beller F, Vogler H (1962) Die Bestimmung des Ovulationstermins bzw. der präovulatorischen Phase unter besonderer Berücksichtigung der physikalischen Eigenschaften des Zervixschleims. Geburtshilfe Frauenheilkd 158: 58-79

    CAS  Google Scholar 

  5. Belonoschkin B (1949) Zeugung beim Menschen im Lichte der Spermatozoenlehre. Sjoberg Forlag, Stockholm

    Google Scholar 

  6. Bigelow JL, Dunson DB, Stanford JB, Ecochard R, Gnoth C, Colombo B (2004) Mucus observations in the fertile window: a better predictor of conception than timing of intercourse. Hum Reprod 19: 889-92

    Article  PubMed  Google Scholar 

  7. Blandau RJ, Moghissi KS (1973) The biology of the cervix. University of Chicago Press, Chicago

    Google Scholar 

  8. Burger HG (1981) Neuroendocrine control of human ovulation. Int J Fertil 26: 153-60

    PubMed  CAS  Google Scholar 

  9. Chrétien FC, GCDGPA (1973) The ultrastructure of human cervical mucus under scanning electron microscopy. Fertil Steril 24: 746-57

    PubMed  Google Scholar 

  10. Colombo B, Masarotto G (2000) Daily fecundability: First results from a new data base. Demographic Research 3/5: Internet edition

    Google Scholar 

  11. Cortesi S, Rigoni G, Zen F, Sposetti R (1981) Correlation of plasma gonadotrophins and ovarian steroids pattern with symptomatic changes in cervical mucus during the menstrual cycle in normal cycling women. Contraception 23: 629-41

    Article  PubMed  CAS  Google Scholar 

  12. Davajan V, Nakamura R, Kharma K (1970) Spermatozoon transport in cervical mucus. Obstet Gynecol Surv 25: 1-43

    Article  Google Scholar 

  13. Davis M, Fugo N (1948) The cause of physiologic basal body temperature changes in women. J Clin Endocrinol 8: 550

    Article  CAS  Google Scholar 

  14. De-Mouzon J, Testart J, Lefevre B, Pouly JL, Frydman R (1984) Time relationships between basal body temperature and ovulation or plasma progestins. Fertil Steril 41: 254-9

    PubMed  CAS  Google Scholar 

  15. Ecochard R, Gougeon A (2000) Side of ovulation and cycle characteristics in normally fertile women. Hum Reprod 15: 752-5

    Article  PubMed  CAS  Google Scholar 

  16. Eggert-Kruse W, Kohler A, Rohr G, Runnebaum B (1993) The pH as an important determinant of sperm-mucus interaction. Fertil Steril 59: 617-28

    PubMed  CAS  Google Scholar 

  17. Faccioli G (1986) Numerical and morphological analysis of human endocervical cells in relation to peripheral estrogen levels. Acta Eur Fertil 17: 333-9

    PubMed  CAS  Google Scholar 

  18. Fredricks CM, AMHE (1976) In vitro response of rabbit utero ovarian ligament to catecholamines. Fertil Steril 27: 957

    Google Scholar 

  19. Freundl G (1988) Zervikalschleim, Spermatozoentransport und Insemination. In: Schneider H, Lauritzen C, Nieschlag E (eds) Grundlagen und Klinik der menschlichen Fortpflanzung, Walter de Gruyter,Berlin

    Google Scholar 

  20. Bremme M, Freundl G, Baur S, Döring G (1991) Natürliche Familienplanung: Neue Technologien und Studien zur Methode. BMJFG

    Google Scholar 

  21. Gaton E, Zejdel L, Bernstein D, Glezerman M, Czernobilsky B, Insler V (1982) The effect of estrogen and gestagen on the mucus production of human endocervical cells: a histochemical study. Fertil Steril 38: 580-5

    PubMed  CAS  Google Scholar 

  22. Georgiades E, Schneider W (1972) Über die Nachweisbarkeitsdauer von Spermien im Zervixsekret der Frau nach einmaliger Kohabitation. Zentralbl Gynakol 94: 1553-8

    PubMed  CAS  Google Scholar 

  23. Hafez ESE (1979) Scanning electron microscopy of cervical mucus and ovulation. In Hafez ESE (ed) Human Ovulation. Elsevier, Amsterdam, pp 327-38

    Google Scholar 

  24. Hanson FW, Overstreet JW (1981) The interaction of human spermatozoa with cervical mucus in vivo. Am J Obstet Gynecol 140: 173-8

    PubMed  CAS  Google Scholar 

  25. Hartman CG (1962) Science and the Safe Period. Williams and Wilkins, Baltimore, MD

    Google Scholar 

  26. Hillier S (1994) Current concepts of the roles of follicle stimulating hormone and luteinizing hormone in folliculogenesis. Hum Reprod 9: 188-91

    PubMed  CAS  Google Scholar 

  27. Höglund A, Odeblad E (1977) Sperm penetration in cervical mucus, a biophysical and group-theoretical approach. In: Insler V, Bettendorf G (eds) The uterine cervix in reproduction. Thieme, Stuttgart, New York

    Google Scholar 

  28. Insler V, Bernstein D, Glezerman M (1977) Diagnosis and classification of the cervical factor of infertility. In: Insler V, Bettendorf G (eds) The Uterine Cervix in Reproduction. Thieme, Stuttgart

    Google Scholar 

  29. Insler V, Glezerman M, Zeidel L, Bernstein D, Misgav N (1980) Sperm storage in the human cervix: a quantitative study. Fertil Steril 33: 288-93

    PubMed  CAS  Google Scholar 

  30. Kähn W (1990) Führen beim Rind Inseminationen nach der Ovulation zur Konzeption? Reprod Dom Anim 25: 111

    Google Scholar 

  31. Kellerman AS, Weed JC (1970) Sperm motility and survival in relation to glucose concentration: an in vitro study. Fertil Steril 21: 802-5

    PubMed  CAS  Google Scholar 

  32. Kissler S, Siebzehnruebl E, Kohl J, Mueller A, Hamscho N, Gaetje R, Ahr A, Rody A, Kaufmann M (2004) Uterine contractility and directed sperm transport assessed by hysterosalpingoscintigraphy (HSSG) and intrauterine pressure (IUP) measurement. Acta Obstet Gynecol Scand 83(4):369-74

    PubMed  Google Scholar 

  33. Kunz G, Leyendecker G (2002) Uterine peristaltic activity during the menstrual cycle: characterization, regulation, function and dysfunction. Reprod Biomed Online 4 Suppl 3:5-9

    Article  Google Scholar 

  34. Kunz G, Beil D, Deininger H, Wildt L, Leyendecker G (1996) The dynamics of rapid sperm transport through the female genital tract: evidence from vaginal sonography of uterine peristalsis and hysterosalpingoscintigraphy. Hum Reprod 11(3):627-32

    Article  PubMed  CAS  Google Scholar 

  35. Leidenberger F, Strowitzki T, Ortmann O (2005) Klinische Endokrinologie für Frauenärzte. Springer, Heidelberg

    Book  Google Scholar 

  36. Leyendecker G, Hinckers K, Nocke W, Plotz EJ (1975) HypophysäreGonadotropine und ovarielle Steroide im Serum während des normalen menstruellen Cyclus und bei Corpus-luteum-Insuffizienz. Arch Gynakol 218: 47-64

    Article  PubMed  CAS  Google Scholar 

  37. Menárguez M, Pastor LM, Odeblad E (2003) Morphological characterization of different human cervical mucus types using light and scanning electron microscopy. Hum Reprod 18(9):1782-89

    Article  PubMed  Google Scholar 

  38. Mikolajczyk RT, Stanford JB, Ecochard R (2008) Multilevel model to assess sources of variation in follicular growth close to the time of ovulation in women with normal fertility: a multicenter observational study. Reprod Biol Endocrinol 6:61-68

    Article  PubMed  Google Scholar 

  39. Moghissi KS (1972) The function of the cervix in fertility. Fertil Steril 23: 295-306

    PubMed  CAS  Google Scholar 

  40. Moghissi KS (1973) Sperm migration through the human cervix. In: Elstein M (ed) Cervical Mucus and Human Reproduction. Scriptor, Copenhagen, pp 128-52

    Google Scholar 

  41. Moghissi KS (1980) Prediction and detection of ovulation. Fertil Steril 34:98

    Google Scholar 

  42. Nicholson R (1965) Vitality of spermatozoa in the endocervial canal. Fertil Steril 16: 758

    PubMed  CAS  Google Scholar 

  43. O’Herlihy C (1980) Preovulatory follicular size: A comparison of ultrasound and laparoscopic measurements. Fertil Steril 34: 24-6

    PubMed  Google Scholar 

  44. Ober K (1952) Aufwachtemperatur und Ovarialfunktion. Klinische Wochenschrift 30: 357-64

    Article  PubMed  CAS  Google Scholar 

  45. Odeblad E (1968) The functional structure of human cervical mucus. Acta Obstet Gynecol Scand 47:57

    Article  PubMed  CAS  Google Scholar 

  46. Palmer DJ (1939) Action thermique des hormones sexuelles chez la femme. CR Soz Diol 130: 895-6

    CAS  Google Scholar 

  47. Pommerenke WT (1953) Phenomena correlated with ovulation as guides to the appraisal of the so-called save period. J Obstet Gynaecol Br 60: 519-28

    Article  CAS  Google Scholar 

  48. Prins G, ZLSG (1979) Functional biochemistry of cervical mucus. In: Hafez ESE (ed) Human Ovulation. Elsevier, Amsterdam, pp 313-25

    Google Scholar 

  49. Raith E (1982) Die modernen Methoden der natürlichen Familienplanung. Med Dissertation. Universität München

    Google Scholar 

  50. Rauscher H (1959) Zur Dauer der Befruchtungsfähigkeit der menschlichen Eizelle. Proceedings of the Third World Congress on Fertility and Sterility. Amsterdam

    Google Scholar 

  51. Royston JP (1982) Basal body temperature, ovulation and the risk of conception, with special reference to the lifetimes of sperm and egg. Biometrics 38: 397-406

    Article  PubMed  CAS  Google Scholar 

  52. Schumacher GFB (1970) Biochemistry of the cervical mucus. Fertil Steril 21: 697

    PubMed  CAS  Google Scholar 

  53. Simpson JL (1995) Pregnancy and the timing of intercourse [editorial; comment] N Engl J Med 333: 1563-5

    Article  PubMed  CAS  Google Scholar 

  54. Simpson JL, Gray RH, Perez A, Mena P, Barbato M, Castilla EE et al. (1997) Pregnancy outcome in natural family planning users: cohort and case-control studies evaluating safety. Adv Contracept 13: 201-14

    Article  PubMed  CAS  Google Scholar 

  55. Simpson JL, Gray RH, Queenan JT, Mena P, Perez A, Kambic RT et al. (1995) Timing of intercourse [letter]. Hum Reprod 10: 2176-7

    PubMed  CAS  Google Scholar 

  56. Stanford JB, Smith KR, Dunson DB (2003) Vulvar mucus observations and the probability of pregnancy. Obstet Gynecol 101: 1285-93

    Article  PubMed  Google Scholar 

  57. Wildt L, Kissler S, Licht P, Becker W (1998) Sperm transport in the human female genital tract and its modulation by oxytocin as assessed by hysterosalpingoscintigraphy, hysterotonography, electrohysterography and doppler sonography. Hum Reprod Update 4(5):655-66

    Article  PubMed  CAS  Google Scholar 

  58. World Health Organization (1980) Temporal relationships between ovulation und defined changes in the concentration of plasma estradiol-17ß, luteinizing hormone, follicle-stimulating hormone, and progesterone. I. probit analysis. Am J Obstet Gynecol 138: 383-90

    Google Scholar 

  59. World Health Organization (1981) Temporal relationship between ovulation and defined changes in the concentration of plasma estradiol-17ß, luteinizing hormone and progesterone. II. Histologic dating. Am J Obstet Gynecol 139: 886-95

    Google Scholar 

  60. Yussman TM (1970) Serum levels of follicle stimulating hormone and luteinizing hormone and of plasma progesterone related to ovulation by corpus luteum biopsy. J Clin Endocrinol 30: 396-9

    Article  CAS  Google Scholar 

  61. Zander J, Forbes TR, Von Munstermann AM, Neher R (1958) Delta hoch 4-3-Ketopregnene-20alpha-ol und delta hoch 4-3-Ketopregnene-20beta-ol, two naturally occuring metabolites of progesterone. Isolation, identification, biologic activity and concentration in human tissues. J Clin Endocrinol Metab 18: 337-53

    Article  PubMed  CAS  Google Scholar 

  62. Zervomanolakis I, Ott HW, Hadziomerovic D, Mattle V, Seeber BE, Virgolini I, Heute D, Kissler S, Leyendecker G, Wildt L (2007) Physiology of upward transport in the human female genital tract. Ann N Y Acad Sci 1101:1-20

    Article  PubMed  CAS  Google Scholar 

  63. Zervomanolakis I, Ott HW, Müller J, Seeber BE, Friess SC, Mattle V, Virgolini I, Heute D, Wildt L (2009) Uterine mechanisms of ipsilateral directed spermatozoa transport: Evidence for a contribution of the utero-ovarian countercurrent system. Eur J Obstet Gynecol Reprod Biol 144 Suppl 1:45-9

    Article  PubMed  Google Scholar 

  64. Zinaman M, Drobnis EZ, Morales P, Brazil C, Kiel M, Cross NL, Hanson FW, Overstreet JW (1989) The physiology of sperm recovered from the human cervix: Acrosomal status and response to inducers of the acrosome reaction. Biol Reprod 41: 797

    Article  Google Scholar 

  65. Zuspan KJ, Zuspan FP (1974) Thermogenic alterations in the woman. II. Basal body, afternoon, and bedtime temperatures. Am J Obstet Gynecol 120: 441-5

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Raith-Paula .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Raith-Paula, E., Frank-Herrmann, P., Freundl, G., Strowitzki, T. (2013). Physiologische Grundlagen der Natürlichen Familienplanung. In: Natürliche Familienplanung heute. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29784-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29784-7_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29783-0

  • Online ISBN: 978-3-642-29784-7

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics