Skip to main content

Interactive Large-Scale Crowd Simulation

  • Chapter
Digital Urban Modeling and Simulation

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 242))

Abstract

We survey some recent work on interactive modeling, simulation, and control of large-scale crowds. Our primary focus is on interactive algorithms that can handle a large number of autonomous agents. This includes techniques for automatically computing collision-free trajectories for each agent as well as generating emergent crowd behaviors including lane formation, edge effects, vortices, congestion avoidance, swirling and modeling varying crowd density. Some of these methods map well to current multi-core and many-core processors and we highlight their performance in different urban scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonini, G., Venegas, S., Bierlaire, M., Thiran, J.-P.: Behavioral priors for detection and tracking of pedestrians in video sequences. International Journal of Computer Vision 69(2), 159–180 (2006)

    Article  Google Scholar 

  2. Bayazit, O.B., Lien, J.-M., Amato, N.M.: Better group behaviors in complex environments with global roadmaps. In: Int. Conf. on the Sim. and Syn. of Living Sys. (Alife), pp. 362–370 (2002)

    Google Scholar 

  3. Channon, P.H., Hopkins, S.H., Phan, D.T.: Derivation of optimal walking motions for a biped walking robot (1992)

    Google Scholar 

  4. Chenney, S.: Flow tiles. In: Proc. 2004 ACM SIGGRAPH / Eurographics Symposium on Computer Animation (2004)

    Google Scholar 

  5. Van den Berg, J., Seawall, J., Lin, M.C., Manocha, D.: Virtualized traffic: Reconstructing traffic flows from discrete spatio-temporal data. In: Proc. of IEEE Virtual Reality Conference, pp. 183–190 (2009)

    Google Scholar 

  6. Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. International Journal on Robotics Research 17(7), 760–772 (1998)

    Article  Google Scholar 

  7. Gayle, R., Sud, A., Andersen, E., Guy, S., Lin, M., Manocha, D.: Real-time navigation of independent agents using adaptive roadmaps. IEEE Trans. on Visualization and Computer Graphics, 34–38 (January/February 2009)

    Google Scholar 

  8. Guy, S., Chhugani, J., Kim, C., Satish, N., Lin, M.C., Manocha, D., Dubey, P.: Clearpath: Highly parallel collision avoidance for multi-agent simulation. In: Proc. of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 177–187 (2009)

    Google Scholar 

  9. Guy, S., Chuggani, J., Curtis, S., Dubey, P., Lin, M., Manocha, D.: Pledestrians: A least-effort approach to crowd simulation. In: Proc. of Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2010)

    Google Scholar 

  10. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Physical Review E 51, 4282 (1995); Copyright (C) 2008 The American Physical Society; Please report any problems to prola@aps.org

    Article  Google Scholar 

  11. Hughes, R.L.: A continuum theory for the flow of pedestrians. Transportation Research Part B: Methodological 36, 507–535 (2002)

    Article  Google Scholar 

  12. Jin, X., Xu, J., Wang, C.C.L., Huang, S., Zhang, J.: Interactive control of large crowd navigation in virtual environment using vector field. In: IEEE Computer Graphics and Application (2008)

    Google Scholar 

  13. Johansson, A., Helbing, D., Shukla, P.K.: Specification of the social force pedestrian model by evolutionary adjustment to video tracking data. Advances in Complex Systems 4(10), 271–288 (2007)

    Article  MathSciNet  Google Scholar 

  14. Juang, J.: Minimal energy control on trajectory generation. In: International Conference on Information Intelligence and Systems, p. 204 (1999)

    Google Scholar 

  15. Kagarlis, M.: Method and apparatus of simulating movement of an autonomous entity through an environment. United States Patent No. US 7,188,056 (September 2002)

    Google Scholar 

  16. Kamphuis, A., Overmars, M.: Finding paths for coherent groups using clearance. In: Proc. of ACM SIGGRAPH / Eurographics Symposium on Computer Animation, pp. 19–28 (2004)

    Google Scholar 

  17. Kang, Y., Park, S., Lee, E.: An efficient control over human running animation with extension of planar hopper model. In: Pacific Graphics, pp. 169–176 (1998)

    Google Scholar 

  18. Karamouzas, I., Heil, P., van Beek, P., Overmars, M.H.: A Predictive Collision Avoidance Model for Pedestrian Simulation. In: Egges, A., Geraerts, R., Overmars, M. (eds.) MIG 2009. LNCS, vol. 5884, pp. 41–52. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  19. Latombe, J.C.: Robot Motion Planning. Kluwer Academic Publishers (1991)

    Google Scholar 

  20. LaValle, S.M.: Planning Algorithms. Cambridge University Press (2006), http://msl.cs.uiuc.edu/planning/

  21. Narain, R., Golas, A., Curtis, S., Lin, M.C.: Aggregate dynamics for dense crowd simulation. In: ACM Transactions on Graphics (Proc. of ACM SIGGRAPH Asia) (2009)

    Google Scholar 

  22. Patil, S., van den Berg, J., Curtis, S., Lin, M.C., Manocha, D.: Directing crowd simulations using navigation fields. Technical report, Department of Computer Science, University of North Carolina (May 2009)

    Google Scholar 

  23. Pelechano, N., Allbeck, J.M., Badler, N.I.: Controlling individual agents in high-density crowd simulation. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 99–108 (2007)

    Google Scholar 

  24. Pelechano, N., Allbeck, J.M., Badler, N.I.: Virtual Crowds: Methods, Simulation and Control. Morgan and Claypool Publishers (2008)

    Google Scholar 

  25. Pettré, J., Ondřej, J., Olivier, A., Cretual, A., Donikian, S.: Experiment-based modeling, simulation and validation of interactions between virtual walkers. In: Symposium on Computer Animation, pp. 189–198. ACM (2009)

    Google Scholar 

  26. Wigan, M.R.: Why should we worry about pedestrians. In: 15th Conference of Australian Institutes of Transport Research, CAITR (1993)

    Google Scholar 

  27. Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model. ACM SIGGRAPH Computer Graphics 21, 25–34 (1987)

    Article  Google Scholar 

  28. Reynolds, C.W.: Steering behaviors for autonomous characters. In: Game Developers Conference (1999)

    Google Scholar 

  29. Roussel, L., Canudas de Wit, C., Goswami, A.: Generation of energy optimal complete gait cycles for biped robots. IEEE Transactions on Robotics and Automation 16, 2036–2041 (1998)

    Google Scholar 

  30. Sarmady, S., Haron, F., Hj, A.Z.: Modeling groups of pedestrians in least effort crowd movements using cellular automata. In: Proc. of 3rd Asia International Conference on Modeling and Simulation, pp. 520–525 (2009)

    Google Scholar 

  31. Scovanner, P., Tappen, M.F.: Learning pedestrian dynamics from the realworld. In: ICCV (2009)

    Google Scholar 

  32. Shao, W., Terzopoulos, D.: Autonomous pedestrians. In: SCA 2005: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 19–28. ACM Press, New York (2005)

    Chapter  Google Scholar 

  33. Simeon, T., Leroy, S., Laumond, J.: Path coordination for multiple mobile robots: a geometric algorithm. In: Proc. of IJCAI (1999)

    Google Scholar 

  34. Snape, J., Manocha, D.: Navigating multiple simple-airplanes in 3d workspace. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 3974–3980 (2009)

    Google Scholar 

  35. Still, G.: Crowd Dynamics. PhD thesis, University of Warwick, UK (2000)

    Google Scholar 

  36. Sud, A., Andersen, E., Curtis, S., Lin, M., Manocha, D.: Real-time path planning for virtual agents in dynamic environments. In: Proc. of IEEE VR, pp. 91–98 (2007)

    Google Scholar 

  37. Treuille, A., Cooper, S., Popovic, Z.: Continuum crowds. In: Proc. of ACM SIGGRAPH, pp. 1160–1168 (2006)

    Google Scholar 

  38. van den Berg, J., Guy, S.J., Lin, M., Manocha, D.: Reciprocal n-Body Collision Avoidance. In: Pradalier, C., Siegwart, R., Hirzinger, G. (eds.) Robotics Research. STAR, vol. 70, pp. 3–19. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  39. van den Berg, J., Lin, M.C., Manocha, D.: Reciprocal velocity obstacles for realtime multi-agent navigation. In: Proc. of IEEE Conference on Robotics and Automation, pp. 1928–1935 (2008)

    Google Scholar 

  40. van den Berg, J., Patil, S., Seawall, J., Manocha, D., Lin, M.C.: Interactive navigation of individual agents in crowded environments. In: Proc. of ACM Symposium on Interactive 3D Graphics and Games, pp. 139–147 (2008)

    Google Scholar 

  41. Warren, C.W.: Multiple path coordination using artificial potential fields. In: Proc. of IEEE Conf. on Robotics and Automation, pp. 500–505 (1990)

    Google Scholar 

  42. Yersin, B., Maim, J., Ciechomski, P., Schertenleib, S., Thalmann, D.: Steering a virtual crowd based on a semantically augmented navigation graph. In: VCROWDS (2005)

    Google Scholar 

  43. Yu, Q., Terzopoulos, D.: A decision network framework for the behavioral animation of virtual humans. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 119–128 (2007)

    Google Scholar 

  44. Zipf, G.K.: Human behavior and the principle of least effort. Addison-Wesley Press (1949)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Manocha, D., Lin, M.C. (2012). Interactive Large-Scale Crowd Simulation. In: Arisona, S.M., Aschwanden, G., Halatsch, J., Wonka, P. (eds) Digital Urban Modeling and Simulation. Communications in Computer and Information Science, vol 242. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29758-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29758-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29757-1

  • Online ISBN: 978-3-642-29758-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics