A Configurable Integrated Circuit for Biomedical Signal Acquisition

  • Jakob M. Tomasik
  • Wjatscheslaw Galjan
  • Kristian M. Hafkemeyer
  • Dietmar Schroeder
  • Wolfgang H. Krautschneider
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 273)


A 10 channel CMOS integrated circuit (IC) for biomedical signal acquisition is presented. Each channel of the IC includes a programmable analog front-end (AFE) and a 20 bit analog-to-digital converter (ADC). An active DC-suppression circuitry allows to tolerate DC-offsets of up to ±1 V for a power supply voltage of 3.3 V. The AFE includes a common-mode rejection ratio (CMRR) calibration circuitry resulting in a CMRR of more than 80 dB. In low-noise mode the AFE achieves an input referred noise of less than 0.11 μV rms for EEG application (0.5-70 Hz) and the power consumption of the IC is less than 30 mW in low-power mode. An experimental USB-Stick for biomedical signal acquisition has been realized using the IC.


Biomedical signals IC Low-power Low-noise Configurable CMRR-calibration DC-suppression 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Martins, R., Selberherr, S., Vaz, F.A.: A CMOS IC for portable EEG acquisition systems. IEEE Trans. Instrum. Meas. 47(5), 1191–1196 (1998)CrossRefGoogle Scholar
  2. 2.
    Ng, K.A., Chan, P.K.: A CMOS analog front-end IC for portable EEG/ECG monitoring. IEEE Trans. Circuits Syst. I, Reg. Papers 52(11), 2335–2346 (2005)CrossRefGoogle Scholar
  3. 3.
    Desel, T., Reichel, T., Rudischhauser, S., Hauer, H.: A CMOS nine channel ECG measurement IC. In: 2nd International Conference ASIC (1996)Google Scholar
  4. 4.
    Fuchs, B., Vogel, S., Schroeder, D.: Universal application-specific integrated circuit for bioelectric data acquisition. Medical Engineering and Physics 24, 695–701 (2002)CrossRefGoogle Scholar
  5. 5.
    Yazicioglu, R.F., Merken, P., Puers, R., Van Hoof, C.: A 200 μW Eight-Channel EEG Acquisition ASIC for Ambulatory EEG Systems. IEEE J. Solid-State Circuits 43(12), 3025–3038 (2008)CrossRefGoogle Scholar
  6. 6.
    Martin, T., Jovanov, E., Raskovic, D.: Issues in wearable computing for medical monitoring applications: a case study of a wearable ECG monitoring device. In: The Fourth International Symposium on Wearable Computers, pp. 43–49 (2000)Google Scholar
  7. 7.
    Galjan, W., Naydenova, D., Tomasik, J.M., Schroeder, D., Krautschneider, W.H.: A portable SoC-based ECG-system for 24h x 7d operating time. In: IEEE Biocas 2008, Baltimore, pp. 85–88 (2008)Google Scholar
  8. 8.
    Scheer, H.J., Sander, T., Trahms, L.: The influence of amplifier, interface and biological noise on signal quality in high-resolution EEG recordings. Physiol. Meas. 27, 109–117 (2006)CrossRefGoogle Scholar
  9. 9.
    Webster, J.G.: Medical instrumentation: application and design, 3rd edn. Wiley & Sons, New York (1998)Google Scholar
  10. 10.
    Van Helleputte, N., Tomasik, J.M., Galjan, W., Mora-Sanchez, A., Schroeder, D., Krautschneider, W.H., Puers, R.: A flexible system-on-chip (SoC) for biomedical signal acquisition and processing. Sens. Actuators A: Phys. 142(1), 361–368 (2008)CrossRefGoogle Scholar
  11. 11.
    Hafkemeyer, K.M., Galjan, W., Tomasik, J.M., Schroeder, D., Krautschneider, W.H.: System-on-Chip Approach for Biomedical Signal Acquisition. In: 18th ProRISC Workshop, Veldhoven, pp. 26–29 (2007)Google Scholar
  12. 12.
    Winter, B.B., Webster, J.G.: Driven-right-leg circuit design. IEEE Trans. Biomed. Eng. 30, 62–66 (1983)CrossRefGoogle Scholar
  13. 13.
    Meier auf der Heide, P., Bronskowski, C., Tomasik, J.M., Schroeder, D.: A CMOS operational amplifier with constant 68 phase margin over its whole range of noise-power trade-off programmability. In: Proceedings 33nd ESSCIRC 2007, Munich, pp. 452–455 (2007)Google Scholar
  14. 14.
    Tomasik, J.M., Hafkemeyer, K.M., Galjan, W., Schroeder, D., Krautschneider, W.H.: A 130nm CMOS Programmable Operational Amplifier. In: Proceedings NORCHIP 2008, Tallinn (2008)Google Scholar
  15. 15.
    Allen, P.E., Holberg, D.R.: CMOS Analog Circuit Design. Oxford University Press, New York (2002)Google Scholar
  16. 16.
    Maxim Integrated Products: Choosing the optimum buffer/ADC combination for your application. Application Note 1094 (2000)Google Scholar
  17. 17.
    Medeiro, F., Perez-Verdu, B., de la Rosa, J.M., Rodriguez-Vazquez, A.: Using CAD Tools for Shortening the Design Cycle of High-Performance ΣΔM: A 16.4bit 9.6kHz 1.71mW ΣΔM in CMOS 0.7μm Technology. International Journal of Circuit Theory and Applications 25, 319–334 (1997)CrossRefGoogle Scholar
  18. 18.
    Fuchs, B.: Integrierte Sensorschaltungen zur EKG-und EEG-Ableitung mit praediktiver Signalverarbeitung. PhD thesis, Institute of Nanoelectronics, Hamburg University of Technology. Shaker Verlag, Aachen (2004)Google Scholar
  19. 19.
    Dijkstra, E., Nys, O., Piguet, C., Degrauwe, M.: On the use of modulo arithmetic comb filters in sigma delta modulators. In: IEEE Proc. ICASSP 1988, pp. 2001–2004 (1988)Google Scholar
  20. 20.
    Wagner, F., Jakobi, C., Tomasik, J.M., Hafkemeyer, K.M., Galjan, W., Schroeder, D., Krautschneider, W.H.: Design and Implementation of an Automated Test Environment for Signal-Acquisition ASICs. In: Semiconductor Conference Dresden (SCD), Dresden (2008)Google Scholar
  21. 21.
    Atmel Corporation, San Jose, USA,
  22. 22.
    Future Technology Devices International Limited, Glasgow, UK,

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jakob M. Tomasik
    • 1
  • Wjatscheslaw Galjan
    • 1
  • Kristian M. Hafkemeyer
    • 2
  • Dietmar Schroeder
    • 1
  • Wolfgang H. Krautschneider
    • 1
  1. 1.Institute of NanoelectronicsHamburg University of TechnologyHamburgGermany
  2. 2.NXP Semiconductors Germany GmbHHamburgGermany

Personalised recommendations