Using Social Network Analysis to Study the Knowledge Sharing Patterns of Health Professionals Using Web 2.0 Tools

  • Samuel Alan Stewart
  • Syed Sibte Raza Abidi
Part of the Communications in Computer and Information Science book series (CCIS, volume 273)


Peer communication is a vital component of the knowledge translation process for healthcare practitioners, and emerging web 2.0 tools are providing virtual venues to facilitate this communication. Using social network analysis methods this paper will attempt to explore the communication patterns that emerge out of the Pediatric Pain Mailing List. The analysis will assess the overall health of the communication network, identify users and subjects of interest, and it will isolate potential subgroups that exist within the community. These results will be presented to the user using the VECoN system, developed as part of this project to present the structure of communication networks graphically to the user through the use of social network analysis methods.


Social network analysis Data visualization Knowledge translation Web 2.0 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barnes, J., Hut, P.: A hierarchical o(n log n) force calculation algorithm. Nature 324 (1986)Google Scholar
  2. 2.
    Borgatti, S., Everett, M., Freeman, L.: Ucinet for windows: Software for social network analysis. Analytic Technologies, Harvard (2002)Google Scholar
  3. 3.
    Borgatti, S.P., Everett, M.G.: Network analysis of 2-mode data. Social Networks 19, 243–269 (1997)CrossRefGoogle Scholar
  4. 4.
    Doreian, P., Batagelj, V., Ferligoj, A.: Generalized blockmodeling of two-mode network data. Social Networks 26, 29–53 (2004)CrossRefGoogle Scholar
  5. 5.
    Freeman, L.C.: Visualizing social networks. Web (1999),
  6. 6.
    Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Software-Practice and Experience 21, 1129–1164 (1991)CrossRefGoogle Scholar
  7. 7.
    Handcock, M.S., Hunter, D.R., Butts, C.T., Goodreau, S.M., Morris, M.: statnet: Software Tools for the Statistical Modeling of Network Data. Seattle, WA. Version 2.1 (2003), Project home page at
  8. 8.
    Hanneman, R.A., Riddle, M.: Introduction to social network methods. University of California, Riverside, CA (2005)Google Scholar
  9. 9.
    Heer, J., Boyd, D.: Vizster: Visualizing online social networks. InfoVis (2005)Google Scholar
  10. 10.
    Heer, J., Card, S., Landay., J.: Prefuse: A toolkit for interactive information visualization. In: CHI (2005)Google Scholar
  11. 11.
    Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Information Processing Letters 31, 7–15 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Krempel, L.: Visualizing networks with spring embedder: Two-mode and valued data. In: American Statistical Association, Proceedings of the Section of Statistical Graphics, pp. 36–45 (1999)Google Scholar
  13. 13.
    Mutton, P.: Inferring and visualizing social networks on internet relay chat. InfoVis, 35–43 (2004)Google Scholar
  14. 14.
    Nardi, B., Whittaker, S., Isaacs, E., Creech, M., Johnson, J., Hainsworth, J.: Contactmap: Integrating communication and information through visualizing personal social networks. Communications of the ACM 45(4), 89–95 (2002)CrossRefGoogle Scholar
  15. 15.
    R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2011) ISBN 3-900051-07-0Google Scholar
  16. 16.
    Stewart, S., Abidi, S., Finley, A.: Pediatric pain management knowledge linkages: mapping experiential knowledge to explicit knowledge. Studies in Health Technology and Informatics 160, 1184–1188 (2010)Google Scholar
  17. 17.
    Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press (1994)Google Scholar
  18. 18.
    Ziberna, A.: Generalized blockmodeling of valued networks. Social Networks 29(1), 105–126 (2007)CrossRefGoogle Scholar
  19. 19.
    Ziberna, A.: Blockmodeling: An R package for Generalized and classical blockmodeling of valued networks. R package version 0.1.8 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Samuel Alan Stewart
    • 1
  • Syed Sibte Raza Abidi
    • 1
  1. 1.NICHE Research GroupDalhousie UniversityHalifaxCanada

Personalised recommendations