Advertisement

Biomedical Literature Retrieval Based on Patient Information

  • Ana Jimenez-Castellanos
  • Izaskun Fernandez
  • David Perez-Rey
  • Elisa Viejo
  • Francisco Javier Díez
  • Xabier García de Kortazar
  • Miguel Garcia-Remesal
  • Victor Maojo
  • Antonio Cobo
  • Francisco del Pozo
Part of the Communications in Computer and Information Science book series (CCIS, volume 273)

Abstract

Information and Communication Technologies has led to a biomedical data explosion. A proportional growth has been produced regarding the amount of scientific literature, but information retrieval methods did not follow the same pattern. By using specialized clinical search engines such as PubMed, Medscape and Cochrane, biomedical publications has became instantly available for clinical users. However, additional parameters, such as user context, are not taken into account yet. Initial queries still retrieve too many results without a relevance-based ranking. The objective of this work was to develop a new method to enhance scientific literature searches from various sources, by including patient information in the retrieval process. Two pathologies have been used to test the proposed method: diabetes and arterial hypertension. Results obtained suggest the suitability of the approach, highlighting the publications related to patient characteristics.

Keywords

Electronic health record Search engines Literature retrieval Integration Federated search 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Healthcare Information and Management Systems Society: Consensus definition of an Electronic Health Record, http://www.himss.org/ASP/topics_ehr.asp
  3. 3.
    Weaver, C.A., Warren, J.J., Delaney, C., et al.: Bedside, Classroom and Bench: Collaborative Strategies to Generate Evidence-Based Knowledge for Nursing Practice. Int. J. Med. Inform. 74, 989–999 (2005)CrossRefGoogle Scholar
  4. 4.
    Antolik, J.: Automatic Annotation of Medical Records. Stud. Health Technol. Inform. 116, 817–822 (2005)Google Scholar
  5. 5.
    Natarajan, K., Stein, D., Jain, S., et al.: An Analysis of Clinical Queries in an Electronic Health Record Search Utility. Int. J. Med. Inform. (2010)Google Scholar
  6. 6.
    Keen, P.G.W., Morton, M.S.S.: Decision support systems: An organizational perspective. Addison Wesley Publishing Company (1978)Google Scholar
  7. 7.
    Kawamoto, K., Houlihan, C.A., Balas, E.A., et al.: Improving Clinical Practice using Clinical Decision Support Systems: A Systematic Review of Trials to Identify Features Critical to Success. BMJ 330, 765 (2005)CrossRefGoogle Scholar
  8. 8.
    Sim, I., Gorman, P., Greenes, R.A., et al.: Clinical Decision Support Systems for the Practice of Evidence-Based Medicine. J. Am. Med. Inform. Assoc. 8, 527–534 (2001)CrossRefGoogle Scholar
  9. 9.
    van der Weijden, T., Legare, F., Boivin, A., et al.: How to Integrate Individual Patient Values and Preferences in Clinical Practice Guidelines? A Research Protocol. Implement Sci. 5, 10 (2010)CrossRefGoogle Scholar
  10. 10.
    Seidling, H.M., Schmitt, S.P., Bruckner, T., et al.: Patient-Specific Electronic Decision Support Reduces Prescription of Excessive Doses. Qual. Saf. Health. Care (2010)Google Scholar
  11. 11.
    Evidence-Based Medicine Working Group: Evidence-Based Medicine. A New Approach to Teaching the Practice of Medicine. JAMA 268, 2420–2425 (1992)Google Scholar
  12. 12.
    Huang, X., Lin, J., Demner-Fushman, D.: Evaluation of PICO as a Knowledge Representation for Clinical Questions. In: AMIA. Annu. Symp. Proc., pp. 359–363 (2006)Google Scholar
  13. 13.
    Couto, F.M., Silva, M.J., Lee, V., et al.: GOAnnotator: Linking Protein GO Annotations to Evidence Text. J. Biomed. Discov. Collab. 1, 19 (2006)CrossRefGoogle Scholar
  14. 14.
    Atserias, J., Casas, B., Comelles, E., et al.: FreeLing 1.3: Syntactic and Semantic Services in an Open-Source NLP Library. In: Proceedings of the 5th International Conference on Language Resources and Evaluation (LREC 2006), pp. 48–55 (2006)Google Scholar
  15. 15.
    Cunningham, H.: GATE, a General Architecture for Text Engineering. Computers and the Humanities 36, 223–254 (2002)CrossRefGoogle Scholar
  16. 16.
    Díaz-Galiano, M.C., García-Cumbreras, M.Á., Martín-Valdivia, M.T., Montejo-Ráez, A., Ureña-López, L.A.: Integrating MeSH Ontology to Improve Medical Information Retrieval. In: Peters, C., Jijkoun, V., Mandl, T., Müller, H., Oard, D.W., Peñas, A., Petras, V., Santos, D. (eds.) CLEF 2007. LNCS, vol. 5152, pp. 601–606. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Spackman, K.A., Reynoso, G.: Examining SNOMED from the Perspective of Formal Ontological Principles: Some Preliminary Analysis and Observations. KR-MED., 72–80 (2004)Google Scholar
  18. 18.
    Jacso, P.: Thoughts about Federated Searching. Information Today 21, 17 (2004)Google Scholar
  19. 19.
    Lee, K.F.: Automatic speech recognition: The development of the SPHINX system. Kluwer Academic Pub. (1989)Google Scholar
  20. 20.
    Karopka, T., Scheel, T., Bansemer, S., et al.: Automatic Construction of Gene Relation Networks using Text Mining and Gene Expression Data. Med. Inform. Internet Med. 29, 169–183 (2004)CrossRefGoogle Scholar
  21. 21.
    Srinivasan, P.: MeSHmap: A Text Mining Tool for MEDLINE. In: Proc. AMIA. Symp., pp. 642–646 (2001)Google Scholar
  22. 22.
    Kankar, P., Adak, S., Sarkar, A., et al.: MedMeSH Summarizer: Text Mining for Gene Clusters, pp. 11–13 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ana Jimenez-Castellanos
    • 1
  • Izaskun Fernandez
    • 2
  • David Perez-Rey
    • 1
  • Elisa Viejo
    • 3
  • Francisco Javier Díez
    • 2
  • Xabier García de Kortazar
    • 2
  • Miguel Garcia-Remesal
    • 1
  • Victor Maojo
    • 1
  • Antonio Cobo
    • 4
    • 3
  • Francisco del Pozo
    • 3
    • 4
  1. 1.Dept Inteligencia Artificial, Facultad de InformáticaUniversidad Politécnica de MadridBoadilla del MonteSpain
  2. 2.Tekniker-IK4EibarSpain
  3. 3.Centre for Biomedical TechnologyTechnical University of MadridPozuelo de AlarcónSpain
  4. 4.Biomedical Research Networking Center in Bioengineering, Biomaterials and NanomedicineSpain

Personalised recommendations