Advertisement

Understanding Cerebral Activations during the Observation of Marketing Stimuli: A Neuroelectrical Perspective

  • Giovanni Vecchiato
  • Laura Astolfi
  • Fabrizio De Vico Fallani
  • Jlenia Toppi
  • Fabio Aloise
  • Anton Giulio Maglione
  • Febo Cincotti
  • Donatella Mattia
  • Fabio Babiloni
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 273)

Abstract

This paper aims to be a survey of recent experiments performed in the Neuromarketing field. Our purpose is to illustrate results obtained by employing the popular tools of investigation well known in the international neuroelectrical community such as the MEG, High Resolution EEG techniques and steady-state visually evoked potentials. By means of temporal and frequency patterns of cortical activations we intend to show how the neuroscientific community is nowadays sensible to the needs of companies and, at the same time, how the same tools are able to retrieve hidden information about the demands of consumers. These instruments could be of help both in pre- and post-design stage of a product, or a service, that a marketer is going to promote.

Keywords

Neuromarketing MEG High resolution EEG SSVEP Functional connectivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McClure, S.M., Li, J., Tomlin, D., Cypert, K.S., Montague, L.M., Montague, P.R.: Neural correlates of behavioral preference for culturally familiar drinks. Neuron 44(2), 379–387 (2004)CrossRefGoogle Scholar
  2. 2.
    Braeutigam, S.: Neuroeconomics–from neural systems to economic behaviour. Brain Research Bulletin 67(5), 355–360 (2005)CrossRefGoogle Scholar
  3. 3.
    Braeutigam, S., Rose, S.P., Swithenby, S.J., Ambler, T.: The distributed neuronal systems supporting choice-making in real-life situations: differences between men and women when choosing groceries detected using magnetoencephalography. The European Journal of Neuroscience 20(1), 293–302 (2004)CrossRefGoogle Scholar
  4. 4.
    Braeutigam, S., Stins, J.F., Rose, S.P., Swithenby, S.J., Ambler, T.: Magnetoencephalographic signals identify stages in real-life decision processes. Neural Plasticity 8(4), 241–254 (2001)CrossRefGoogle Scholar
  5. 5.
    Kimura, D.: Sex, sexual orientation and sex hormones influence human cognitive function. Current Opinion in Neurobiology 6(2), 259–263 (1996)CrossRefGoogle Scholar
  6. 6.
    Ioannides, A.A., Liu, L., Theofilou, D., Dammers, J., Burne, T., Ambler, T., Rose, S.: Real time processing of affective and cognitive stimuli in the human brain extracted from MEG signals. Brain Topography 13(1), 11–19 (2000)CrossRefGoogle Scholar
  7. 7.
    Summerfield, C., Mangels, J.A.: Coherent theta-band EEG activity predicts item-context binding during encoding. NeuroImage 24(3), 692–703 (2005)CrossRefGoogle Scholar
  8. 8.
    Cahill, L., Haier, R.J., Fallon, J., Alkire, M.T., Tang, C., Keator, D., Wu, J., McGaugh, J.L.: Amygdala activity at encoding correlated with long-term, free recall of emotional information. Proceedings of the National Academy of Sciences of the United States of America 93(15), 8016–8021 (1996)CrossRefGoogle Scholar
  9. 9.
    Maddock, R.J.: The retrosplenial cortex and emotion: new insights from functional neuroimaging of the human brain. Trends in Neurosciences 22(7), 310–316 (1999)CrossRefGoogle Scholar
  10. 10.
    Grabenhorst, F., Rolls, E.T., Parris, B.A.: From affective value to decision-making in the prefrontal cortex. The European Journal of Neuroscience 28(9), 1930–1939 (2008)CrossRefGoogle Scholar
  11. 11.
    Astolfi, L., De Vico Fallani, F., Cincotti, F., Mattia, D., Bianchi, L., Marciani, M.G., Salinari, S., Colosimo, A., Tocci, A., Soranzo, R., Babiloni, F.: Neural basis for brain responses to TV commercials: a high-resolution EEG study. IEEE Transactions on Neural Systems and Rehabilitation Engineering: A Publication of the IEEE Engineering in Medicine and Biology Society 16(6), 522–531 (2008)CrossRefGoogle Scholar
  12. 12.
    Vecchiato, G., Astolfi, L., De Vico Fallani, F., Cincotti, F., Mattia, D., Salinari, S., Soranzo, R., Babiloni, F.: Changes in brain activity during the observation of TV commercials by using EEG, GSR and HR measurements. Brain Topography 23(2), 165–179 (2010)CrossRefGoogle Scholar
  13. 13.
    Werkle-Bergner, M., Muller, V., Li, S.C., Lindenberger, U.: Cortical EEG correlates of successful memory encoding: implications for lifespan comparisons. Neuroscience and Biobehavioral Reviews 30(6), 839–854 (2006)CrossRefGoogle Scholar
  14. 14.
    Tulving, E., Kapur, S., Craik, F.I., Moscovitch, M., Houle, S.: Hemispheric encoding/retrieval asymmetry in episodic memory: positron emission tomography findings. Proceedings of the National Academy of Sciences of the United States of America 91(6), 2016–2020 (1994)CrossRefGoogle Scholar
  15. 15.
    Habib, R., Nyberg, L., Tulving, E.: Hemispheric asymmetries of memory: the HERA model revisited. Trends in Cognitive Sciences 7(6), 241–245 (2003)CrossRefGoogle Scholar
  16. 16.
    Babiloni, F., Babiloni, C., Locche, L., Cincotti, F., Rossini, P.M., Carducci, F.: High-resolution electro-encephalogram: source estimates of Laplacian-transformed somatosensory-evoked potentials using a realistic subject head model constructed from magnetic resonance images. Medical & Biological Engineering & Computing 38(5), 512–519 (2000)CrossRefGoogle Scholar
  17. 17.
    Astolfi, L., Vecchiato, G., De Vico Fallani, F., Salinari, S., Cincotti, F., Aloise, F., Mattia, D., Marciani, M.G., Bianchi, L., Soranzo, R., Babiloni, F.: The track of brain activity during the observation of TV commercials with the high-resolution EEG technology. Computational Intelligence and Neuroscience 652078 (2009)Google Scholar
  18. 18.
    De Vico Fallani, F., Astolfi, L., Cincotti, F., Mattia, D., Marciani, M.G., Gao, S., Salinari, S., Soranzo, R., Colosimo, A., Babiloni, F.: Structure of the cortical networks during successful memory encoding in TV commercials. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology 119(10), 2231–2237 (2008)CrossRefGoogle Scholar
  19. 19.
    Aftanas, L.I., Reva, N.V., Varlamov, A.A., Pavlov, S.V., Makhnev, V.P.: Analysis of evoked EEG synchronization and desynchronization in conditions of emotional activation in humans: temporal and topographic characteristics. Neuroscience and Behavioral Physiology 34(8), 859–867 (2004)CrossRefGoogle Scholar
  20. 20.
    Silberstein, R.B., Schier, M.A., Pipingas, A., Ciorciari, J., Wood, S.R., Simpson, D.G.: Steady-state visually evoked potential topography associated with a visual vigilance task. Brain Topography 3(2), 337–347 (1990)CrossRefGoogle Scholar
  21. 21.
    Silberstein, R.B., Harris, P.G., Nield, G.A., Pipingas, A.: Frontal steady-state potential changes predict long-term recognition memory performance. International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology 39(1), 79–85 (2000)CrossRefGoogle Scholar
  22. 22.
    Silberstein: Steady State Visually Evoked Potentials, Brain Resonances and Cognitive Processes. In: Neocortical Dynamics and Human EEG Rhythms. Oxford University Press (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Giovanni Vecchiato
    • 1
    • 2
  • Laura Astolfi
    • 2
    • 3
  • Fabrizio De Vico Fallani
    • 1
    • 2
  • Jlenia Toppi
    • 2
    • 3
  • Fabio Aloise
    • 2
  • Anton Giulio Maglione
    • 4
  • Febo Cincotti
    • 2
  • Donatella Mattia
    • 2
  • Fabio Babiloni
    • 1
    • 2
  1. 1.Dept. Physiology and PharmacologyUniversity of Rome “Sapienza”RomeItaly
  2. 2.IRCCS Fondazione Santa LuciaRomeItaly
  3. 3.Dept. of Computer Science and SystemsUniversity of Rome “Sapienza”RomeItaly
  4. 4.Dept. of Anatomy, Histology, Forensic Medicine and OrthopedicsUniversity “Sapienza”RomeItaly

Personalised recommendations