Advertisement

A Robust and Efficient Spatio-Temporal Feature Selection for Interpretation of EEG Single Trials

  • Yehudit Meir-Hasson
  • Andrey Zhdanov
  • Talma Hendler
  • Nathan Intrator
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 273)

Abstract

Interpretation of brain states from EEG single trials, multiple electrodes and time points, is addressed. A computationally efficient and robust framework for spatio-temporal feature selection is introduced. The framework is generic and can be applied to different classification tasks. Here, it is applied to a visual task of distinguishing between faces and houses. The framework includes training of regularized logistic regression classifier with cross-validation and the usage of a wrapper approach to find the optimal model. It was compared with two other methods for selection of time points. The spatial-temporal information of brain activity obtained using this framework, can give an indication to correlated activity of regions in the brain (spatial) as well as temporal activity correlations between and within EEG electrodes. This spatial-temporal analysis can render a far more holistic interpretability for visual perception mechanism without any a priori bias on certain time periods or scalp locations.

Keywords

EEG BCI Regularization Spatio-temporal analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wolpaw, J., Birbaumer, N., McFarland, D., Pfurtscheller, G., Vaughan, T.: Brain-Computer Interfaces for Communication and Control. Clin. Neurophy. 113, 767–791 (2002)CrossRefGoogle Scholar
  2. 2.
    Allison, B., Wolpaw, E., Wolpaw, J.: Brain Computer Interface Systems: Progress and Prospects. Expert Review of Medical Devices 4, 463–474 (2007)CrossRefGoogle Scholar
  3. 3.
    Dornhege, G., del R. Millan, J., Hinterberger, T., McFarland, D., Muller, K.R.: Towards Brain-Computer Interfacing. MIT Press (2007)Google Scholar
  4. 4.
    Blankertz, B., Dornhege, G., Krauledat, M., Muller, K.R., Curio, G.: The noninvasive Berlin brain-computer interface: fast acquisition of effective performance in untrained subjects. NeuroImage 37, 539–550 (2007)CrossRefGoogle Scholar
  5. 5.
    Lotte, F., Congedo, M., Lecuyer, A., Lamarche, F., Arnaldi, B.: A Review of Classification Algorithms for Eeg-Based Brain-Computer Interfaces. J. Neural Eng. 4, R1–R13 (2007)CrossRefGoogle Scholar
  6. 6.
    Bellman, R.: Adaptive Control Processes. Princeton University Press, Princeton (1961)zbMATHGoogle Scholar
  7. 7.
    Muller, T., Ball, T., Kristeva-Feige, R., Mergner, T., Timmer, J.: Selecting Relevant Electrode Positions for Classification Tasks Based on the Electro-Encephalogram. Med. Biol. Eng. Comput. 38, 62–67 (2000)CrossRefGoogle Scholar
  8. 8.
    Palaniappan, R., Raveendran, P., Omatu, S.: VEP Optimal Channel Selection Using Genetic Algorithm for Neural Network Classification of Alcoholics. IEEE Trans. Neural Netw. 13, 486–491 (2002)CrossRefGoogle Scholar
  9. 9.
    Schroder, M., Bogdan, M., Rosenstiel, W., Hinterberger, T., Birbaumer, N.: Automated EEG Feature Selection for Brain Computer Interfaces. In: Proc. 1st Intern. IEEE-EMBS Conf. on Neural Eng., Capri Island, Italy (2003)Google Scholar
  10. 10.
    Lal, T., Schroder, M., Hinterberger, T., Weston, J., Bogdan, M., Birbaumer, N., Scholkopf, B.: Support Vector Channel Selection in BCI. IEEE Trans. Biomed. Eng. 51, 1003–1010 (2004)CrossRefGoogle Scholar
  11. 11.
    Tomioka, R., Muller, K.R.: A regularized discriminative framework for EEG analysis with application to brain-computer interface. Neuroimage 49, 415–432 (2010)CrossRefGoogle Scholar
  12. 12.
    Jain, A.K., Duin, R.P.W., Mao, J.: Statistical pattern recognition: a review. IEEE Trans. Pattern Anal. Mach. Intell. 22, 4–37 (2000)CrossRefGoogle Scholar
  13. 13.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Recognition, 2nd edn. Wiley-Interscience, New York (2001)Google Scholar
  14. 14.
    Christoforou, C., Sajda, P., Parra, L.C.: Second order bilinear discriminant analysis for single trial EEG analysis. Advances in Neural Info. Proc. Sys. 20, 313–320 (2008)Google Scholar
  15. 15.
    Tomioka, R., Aihara, K., Muller, K.R.: Logistic regression for single trial eeg classification. In: Scholkopf, B., Platt, J., Hoffman, T. (eds.) Advances in Neural Information Processing Systems, vol. 19, pp. 1377–1384 (2007)Google Scholar
  16. 16.
    Zhdanov, A., Hendler, T., Ungerleider, L., Intrator, N.: Inferring Functional Brain States Using Temporal Evolution of Regularized Classifiers. Comput. Intell. Neurosci., Article ID. 52609 (2007)Google Scholar
  17. 17.
    Murray, M., Brunet, M., Brunet, D., Michel, C.: Topographic ERP analyses: step-by-step tutorial review. Brain Topography 20, 249–269 (2008)CrossRefGoogle Scholar
  18. 18.
    Lehmann, D., Skrandies, W.: Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroenceph. Clin. Neurophysiol. 48, 609–621 (1980)CrossRefGoogle Scholar
  19. 19.
    Lehmann, D., Ozaki, H., Pal, I.: EEG alpha map series: brain microstates by space-oriented adaptive segmentation. Electroenceph. Clin. Neurophysiol. 67, 271–288 (1987)CrossRefGoogle Scholar
  20. 20.
    Hasson-Meir, Y., Zhdanov, A., Hendler, T., Intrator, N.: Inference of Brain Mental States from Spatio-Temporal Analysis of EEG Single Trials. In: Proc. of Biosignals (2011)Google Scholar
  21. 21.
    Ekman, P., Friesen, W.: Pictures of Facial Affect. Consulting Psychologists Press, Palo Alto (1976)Google Scholar
  22. 22.
    Lundqvist, D., Flykt, A., Ohman, A.: The Karolinska Directed Emotional Faces (KDEF). Dept. of Neurosci., Karolinska Hospital, Stockholm, UK (1998)Google Scholar
  23. 23.
    Sadeh, B., Zhdanov, A., Podlipsky, I., Hendler, T., Yovel, G.: The Validity of the Face-Selective ERP N170 Component During Simultaneous Recording with Functional MRI. Neuroimage 42, 778–786 (2008)CrossRefGoogle Scholar
  24. 24.
    Ben-Simon, E., Podlipsky, I., Arieli, A., Zhdanov, A., Hendler, T.: Never Resting Brain: Simultaneous Representation of Two Alpha Related Processes in Humans. PloS ONE 3, e3984 (2008)CrossRefGoogle Scholar
  25. 25.
    Laufs, H., Krakow, K., Sterzer, P., Eger, E., Beyerle, A.: Electroencephalographic signatures of attentional and cogntive default modes in spontaneous brain activity fluctuations at rest. Proc. of the National Academy of Sciences, U.S.A. 100, 11053–11058 (2003)CrossRefGoogle Scholar
  26. 26.
    Delorme, A., Makeig, S., Sejnowski, T.: Automatic Artifact Rejection for EEG Data Using High-Order Statistics and Independent Component Analysis. In: Proc. of the 3th Intern. ICA Conf. (2001)Google Scholar
  27. 27.
    Geman, S., Bienenstock, E.: Neural Networks and The Bias / Variance Dilemma. Neural Computation 4, 1–58 (1992)CrossRefGoogle Scholar
  28. 28.
    Hosmer, D., Lemeshow, S.: Applied Logistic Regression, pp. 118–124. John Wiley, New York (1989)Google Scholar
  29. 29.
    Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning. Springer Series in Statistics (2001)Google Scholar
  30. 30.
    Detre, G., Polyn, S., Moore, C., Natu, V., Singer, B., Cohen, J., Haxby, J., Norman, K.: The Multi-Voxel Pattern Analysis (MVPA) Toolbox. In: The Annual Meeting of the Organization for Human Brain Mapping, Florence, Italy (2006), http://www.csbmb.princeton.edu/mvpa
  31. 31.
    Minka, T.: A Comparison of Numerical Optimizers for Logistic Regression. technical report, Dept. of Statistics, Carnegie Mellon Univ. (2003)Google Scholar
  32. 32.
  33. 33.
    Kohavi, R., John, G.: Wrappers for Feature Subset Selection. Artificial Intelligence 97, 273–324 (1997)zbMATHCrossRefGoogle Scholar
  34. 34.
    Bentin, S., Allison, T., Puce, A., Perez, E., McCarthy, G.: Electrophysiological Studies of Faces Perception in Humans. J. Cognitive Neurosci. 8, 551–565 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yehudit Meir-Hasson
    • 1
  • Andrey Zhdanov
    • 1
  • Talma Hendler
    • 2
  • Nathan Intrator
    • 1
  1. 1.Balvatnik School of Computer ScienceTel-Aviv UniversityTel-AvivIsrael
  2. 2.The Functional Brain Imaging Unit, Wohl Institute for Advanced ImagingTel Aviv Sourasky Medical CenterTel-AvivIsrael

Personalised recommendations