Skip to main content

Quasi-Steady State Approximations and Multistability in the Double Phosphorylation-Dephosphorylation Cycle

  • Conference paper

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 273))

Abstract

In this paper we analyze the double phosphorylation-dephosphorylati- on cycle (or double futile cycle), which is one of the most important biochemical mechanisms in intracellular reaction networks, in order to discuss the applicability of the standard quasi steady-state approximation (sQSSA) to complex enzyme reaction networks, like the ones involved in intracellular signal transduction. In particular we focus on what we call “complex depletion paradox”, according to which complexes disappear in the conservation laws, in contrast with the equations of their dynamics. In fact, in common literature the intermediate complexes either are ignored or are supposed to rapidly become negligible in the quasi steady-state phase, differently from what really happens, as shown studying the cycle without any quasi-steady state approximation. Applying the total quasi steady-state approximation (tQSSA) to the double phosphorylation-dephosphorylation cycle, we show how to solve the apparent paradox, without the need of further hypotheses, like, for example, the substrate sequestration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Henri, V.: Recherches sur la loi de l’action de la sucrase. C. R. Hebd. Acad. Sci. 133, 891–899 (1901)

    Google Scholar 

  2. Henri, V.: Über das gesetz der wirkung des invertins. Z. Phys. Chem. 39, 194–216 (1901)

    Google Scholar 

  3. Michaelis, L., Menten, M.L.: Die kinetik der invertinwirkung. Biochem. Z. 49, 333–339 (1913)

    Google Scholar 

  4. Briggs, G.E., Haldane, J.B.S.: A note on the kinetics of enzyme action. Biochem. J. 19, 338–339 (1925)

    Google Scholar 

  5. Segel, L.: On the validity of the steady state assumption of enzyme kinetics. Bull. Math. Biol. 50, 579–593 (1988)

    MathSciNet  MATH  Google Scholar 

  6. Bisswanger, H.: Enzyme Kinetics. In: Principles and Methods, Wiley-VCH (2002)

    Google Scholar 

  7. Segel, L.A., Slemrod, M.: The quasi steady-state assumption: a case study in perturbation. Siam Rev. 31, 446–477 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Straus, O.H., Goldstein, A.: Zone behavior of enzymes. J. Gen. Physiol. 26, 559–585 (1943)

    Article  Google Scholar 

  9. Sols, A., Marco, R.: Concentrations of metabolites and binding sites, implications in metabolic regulation. Curr. Top. Cell. Regul. 2, 227–273 (1970)

    Google Scholar 

  10. Laidler, K.J.: Theory of the transient phase in kinetics, with special reference to enzyme systems. Can. J. Chem. 33, 1614–1624 (1955)

    Article  Google Scholar 

  11. Borghans, J., de Boer, R., Segel, L.: Extending the quasi-steady state approximation by changing variables. Bull. Math. Biol. 58, 43–63 (1996)

    Article  MATH  Google Scholar 

  12. Tzafriri, A.R.: Michaelis-Menten kinetics at high enzyme concentrations. Bull. Math. Biol. 65, 1111–1129 (2003)

    Article  Google Scholar 

  13. Hatakeyama, M., Kimura, S., Naka, T., Kawasaki, T., Yumoto, N., Ichikawa, M., Kim, J.H., Saito, K., Saeki, K.M., Shirouzu, M., Yokoyama, S., Konagaya, A.: A computational model on the modulation of mitogen-activated protein kinase (mapk) and akt pathways in heregulin-induced erbb signalling. Biochem. J. 373, 451–463 (2003)

    Article  Google Scholar 

  14. Markevich, N.I., Hoek, J.B., Kholodenko, B.N.: Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J. Cell Biol. 164, 353–359 (2004)

    Article  Google Scholar 

  15. Chickarmane, V., Kholodenko, B.N., Sauro, H.M.: Oscillatory dynamics arising from competitive inhibition and multisite phosphorylation. J. Theor. Biol. 244, 68–76 (2007)

    Article  MathSciNet  Google Scholar 

  16. Ortega, F., Garces, J.L., Mas, F., Kholodenko, B.N., Cascante, M.: Bistability from double phosphorylation in signal transduction. kinetic and structural requirements. FEBS J. 273, 3915–3926 (2006)

    Article  Google Scholar 

  17. Goldbeter, A., Koshland, D.E.: An amplified sensitivity arising from covalent modification in biological system. Proc. Natl. Acad. Sci. 78, 6840–6844 (1981)

    Article  MathSciNet  Google Scholar 

  18. Camps, M., Nichols, A., Arkinstall, S.: Dual specificity phosphatases: a gene family for control of map kinase function. FASEB J. 14, 6–16 (2000)

    Google Scholar 

  19. Zhan, X.L., Wishart, M.J., Guan, K.L.: Nonreceptor tyrosine phosphatases in cellular signaling: regulation of mitogen-activated protein kinases. Chem. Rev. 101, 2477–2496 (2001)

    Article  Google Scholar 

  20. Pedersen, M.G., Bersani, A.M., Bersani, E.: Steady-state approximations in intracellular signal transduction – a word of caution. J. Math. Chem. 43, 1318–1344 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sabouri-Ghomi, M., Ciliberto, A., Kar, S., Novak, B., Tyson, J.J.: Antagonism and bistability in protein interaction networks. J. Theor. Biol. 250, 209–218 (2008)

    Article  Google Scholar 

  22. Flach, E.H., Schnell, S.: Use and abuse of the quasi-steady-state approximation. IEE Proceed. Syst. Biol. 153, 187–191 (2006)

    Google Scholar 

  23. van Slyke, D.D., Cullen, G.E.: The mode of action of urease and of enzymes in general. J. Biol. Chem. 19, 141–180 (1914)

    Google Scholar 

  24. Kholodenko, B.N.: Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. Eur. J. Biochem. 267, 1583–1588 (2000)

    Article  Google Scholar 

  25. Ciliberto, A., Capuani, F., Tyson, J.J.: Modeling networks of coupled anzymatic reactions using the total quasi-steady state approximation. PLoS Comput. Biol. 3, 463–472 (2007)

    Article  MathSciNet  Google Scholar 

  26. Pedersen, M., Bersani, A.M.: The total quasi-steady state approximation simplifies theoretical analysis at non-negligible enzyme concentrations: Pseudo first-order kinetics and the loss of zero-order ultrasensitivity. J. Math. Biol. 60, 267–283 (2010)

    Article  MathSciNet  Google Scholar 

  27. Bluthgen, N., Bruggeman, F.J., Legewie, S., Herzel, H., Westerhoff, H.V., Kholodenko, B.N.: Effects of sequestration on signal transduction cascades. FEBS J. 273, 895–906 (2006)

    Article  Google Scholar 

  28. Legewie, S., Schoeberl, B., Blüthgen, N., Herzel, H.: Competing docking interactions can bring about bistability in the mapk cascade. Biophys. J. 93, 2279–2288 (2007)

    Article  Google Scholar 

  29. Xing, J., Chen, J.: The Goldbeter-Koshland switch in the first-order region and its response to dynamic disorder. PLOS ONE 3, e2140 (2008)

    Article  Google Scholar 

  30. Salazar, C., Hofer, T.: Kinetic models of phosphorylation cycles: A systematic approach using the rapid equilibrium approximation for protein-protein interactions. Biosystems 83, 195–206 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dell’Acqua, G., Bersani, A.M. (2013). Quasi-Steady State Approximations and Multistability in the Double Phosphorylation-Dephosphorylation Cycle. In: Fred, A., Filipe, J., Gamboa, H. (eds) Biomedical Engineering Systems and Technologies. BIOSTEC 2011. Communications in Computer and Information Science, vol 273. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29752-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29752-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29751-9

  • Online ISBN: 978-3-642-29752-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics