Discretized Kinetic Models for Abductive Reasoning in Systems Biology

  • Gabriel Synnaeve
  • Katsumi Inoue
  • Andrei Doncescu
  • Hidetomo Nabeshima
  • Yoshitaka Kameya
  • Masakazu Ishihata
  • Taisuke Sato
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 273)


The study of systems biology through inductive logic programming (ILP) aims at improving the understanding of the physiological state of the cell by reasoning with rules and relations instead of ordinary differential equations. This paper presents a method for enabling the ILP framework to deal with quantitative information from some experimental data in systems biology. The method consist in both discretizing the evolution of concentrations of metabolites during experiments and transcribing enzymatic kinetics (for instance Michaelis-Menten kinetics) into logic rules. Kinetic rules are added to background knowledge, along with the topology of the metabolic pathway, whereas discretized concentrations are observations. Applying ILP allows for abduction and induction in such a system. A logical model of the glycolysis and pentose phosphate pathways of E. Coli is proposed to support our method description. Logical formulae on concentrations of some metabolites, which could not be measured during the dynamic state, are produced through logical abduction. Finally, as this results in a large number of hypotheses, they are ranked with an expectation maximization algorithm working on binary decision diagrams.


Pentose Phosphate Pathway Inductive Logic Programming Binary Decision Diagram Abductive Reasoning Interval Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kitano, H.: Systems biology toward system-level understanding of biological systems. Science 295, 1662–1664 (2002)CrossRefGoogle Scholar
  2. 2.
    Baral, C., Chancellor, K., Tran, N., Tran, N., Joy, A., Berens, M.: A knowledge based approach for representing and reasoning about signaling networks. In: Proc. of the 12th Int. Conf. on Intelligent Systems for Molecular Biology, pp. 15–22 (2004)Google Scholar
  3. 3.
    Juvan, P., Demsar, J., Shaulsky, G., Zupan, B.: Genepath: from mutations to genetic networks and back. Nucleic Acids Res. 33 (2005)Google Scholar
  4. 4.
    King, R., Whelan, K., Jones, F., Reiser, P., Bryant, C., Muggleton, S., Kell, D., Olivier, S.: Functional genomic hypothesis generation and experimentation by a robot scientist. Nature 427, 247–252 (2004)CrossRefGoogle Scholar
  5. 5.
    King, R., Garrett, S., Coghill, G.: On the use of qualitative reasoning to simulate and identify metabolic pathways. Bioinformatics 21, 2017–2026 (2005)CrossRefGoogle Scholar
  6. 6.
    Tamaddoni-Nezhad, A., Chaleil, R., Kakas, A., Muggleton, S.: Application of abductive ILP to learning metabolic network inhibition from temporal data. Machine Learning 64, 209–230 (2006)zbMATHCrossRefGoogle Scholar
  7. 7.
    Tiwari, A., Talcott, C., Knapp, M., Lincoln, P., Laderoute, K.: Analyzing Pathways Using SAT-Based Approaches. In: Anai, H., Horimoto, K., Kutsia, T. (eds.) Ab 2007. LNCS, vol. 4545, pp. 155–169. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Doncescu, A., Yamamoto, Y., Inoue, K.: Biological systems analysis using Inductive Logic Programming. In: IEEE International Symp. on Bioinf. and Life Science Computing (2007)Google Scholar
  9. 9.
    Dworschak, S., Grell, S., Nikiforova, V., Schaub, T., Selbig, J.: Modeling biological networks by action languages via answer set programming. Constraints 13, 21–65 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Fages, F., Soliman, S., France, I.R.: Model Revision from Temporal Logic Properties in Computational Systems Biology. In: De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S.H. (eds.) Probabilistic Inductive Logic Programming. LNCS (LNAI), vol. 4911, pp. 287–304. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Inoue, K., Sato, T., Ishihata, M., Kameya, Y., Nabeshima, H.: Evaluating abductive hypotheses using and EM algorithm on BDDs. In: Proc. of IJCAI 2009, pp. 815–820. AAAI Press (2009)Google Scholar
  12. 12.
    Gauvain, J.L., Lee, C.H.: Maximum a posteriori estimation for multivariate gaussian mixture observations of markov chains. IEEE Transactions on Speech and Audio Processing 2, 291–298 (1994)CrossRefGoogle Scholar
  13. 13.
    Ji, S., Krishnapuram, B., Carin, L.: Variational bayes for continuous hidden markov models and its application to active learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 522–532 (2006)CrossRefGoogle Scholar
  14. 14.
    Kanehisa, M., Goto, S.: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000)CrossRefGoogle Scholar
  15. 15.
    Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., Katayama, T., Kawashima, S., Okuda, S., Tokimatsu, T., Yamanishi, Y.: KEGG for linking genomes to life and the environment. Nucleic Acids Res. 36, 480–484 (2008)CrossRefGoogle Scholar
  16. 16.
    Nabeshima, H., Iwanuma, K., Inoue, K.: SOLAR: A consequence finding system for advanced reasoning. In: Proc. of the 11th International Conference TABLEAUX 2003. LNCS (LNAI), vol. 2786, pp. 257–263 (2003)Google Scholar
  17. 17.
    Ishihata, M., Kameya, Y., Sato, T., Minato, S.: Propositionalizing the EM algorith by BDDs. Technical report, TR08-0004, Dept. Comp. Sc., Tokyo Instute of Technology (2008)Google Scholar
  18. 18.
    Benhamou, F.: Interval Constraint Logic Programming. In: Podelski, A. (ed.) Constraint Programming: Basics and Trends. LNCS, vol. 910, pp. 1–21. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  19. 19.
    Geurts, P.: Pattern Extraction for Time Series Classification. In: Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 115–127. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Keogh, E., Lin, J., Fu, A.: HOT SAX: efficiently finding the most unusual time series subsequence. In: 5th IEEE International Conference on Data Mining (2005)Google Scholar
  21. 21.
    Rabiner, L.: A tutorial on hidden markov models and selected applications in speech recognition. Proc. of the IEEE 77, 257–286 (1989)CrossRefGoogle Scholar
  22. 22.
    Schwarz, G.: Estimating the dimension of a model. Annals of Statistics 6, 461–464 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Cheeseman, P., Stutz, J.: Bayesian classification (autoclass): Theory and results. In: Advances in Knowledge Discovery and Data Mining, pp. 153–180. The MIT Press (1995)Google Scholar
  24. 24.
    Beal, M.: Variational Algorithms for Approximate Bayesian Inference. PhD thesis, Gatsby Comp. Neurosc. Unit, University College London (2003)Google Scholar
  25. 25.
    De Raedt, L.: Logical and Relational Learning. Springer, Heidelberg (2008)zbMATHCrossRefGoogle Scholar
  26. 26.
    Kameya, Y., Synnaeve, G., Doncescu, A., Inoue, K., Sato, T.: A bayesian hybrid approach to unsupervised time series discretization. In: International Conference on Technologies and Applications of Artificial Intelligence, pp. 342–349 (2010)Google Scholar
  27. 27.
    Chassagnole, C., Rodrigues, J., Doncescu, A., Yang, L.T.: Differential evolutionary algorithms for in vivo dynamic analysis of glycolysis and pentose phosphate pathway in Escherichia Coli. A. Zomaya (2006)Google Scholar
  28. 28.
    Mooney, R.: Integrating abduction and induction in machine learning. In: Working Notes of the IJCAI 1997 Workshop on Abduction and Induction in AI, pp. 37–42 (1997)Google Scholar
  29. 29.
    Inoue, K.: Linear resolution for consequence finding. Artificial Intelligence 56, 301–353 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Muggleton, S.: Inverse entailment and progol. New Generation Computing 13, 245–286 (1995)CrossRefGoogle Scholar
  31. 31.
    Inoue, K.: Induction as consequence finding. Machine Learning 55, 109–135 (2004)zbMATHCrossRefGoogle Scholar
  32. 32.
    Peters-Wendisch, P., Schiel, B., Wendisch, V., Katsoulidis, E., et al.: Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by corynebacterium glutamicum. Molecular Microbiol. Biotechnol. 3 (2001)Google Scholar
  33. 33.
    Ray, O., Whelan, K., King, R.: A nonmonotonic logical approach for modelling and revising metabolic networks. In: IEEE Complex, Intelligent and Software Intensive Systems (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Gabriel Synnaeve
    • 1
  • Katsumi Inoue
    • 2
  • Andrei Doncescu
    • 3
  • Hidetomo Nabeshima
    • 4
  • Yoshitaka Kameya
    • 5
  • Masakazu Ishihata
    • 5
  • Taisuke Sato
    • 5
  1. 1.E-Motion Team at INRIAGrenobleFrance
  2. 2.National Institute of InformaticsTokyoJapan
  3. 3.LAAS-CNRSToulouseFrance
  4. 4.University of YamanashiYamanashiJapan
  5. 5.Tokyo Institute of TechnologyTokyoJapan

Personalised recommendations