Skip to main content

Informatics-Driven Infectious Disease Research

  • Conference paper
  • 1586 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 273))

Abstract

Informatics-driven approaches change how research and development are conducted, who participates, and enables systems-oriented views of science and research. Most life sciences researchers have a very strong desire for the full integration of data and analysis tools delivered through a single interface. Infectious disease (ID) research and development provides a uniquely challenging and high impact opportunity. The biological complexity of infectious disease systems, which are composed of multiple scales of interactions between potential pathogens, hosts, vectors, and the environment, challenges information resources because of the breadth of organism-organism and organism-environment interactions. Applications of integrated data for ID serves a variety of constituencies, such as clinicians, diagnostician, drug and vaccine developers, and epidemiologists. Thus there is a complexity that makes ID an opportune area in which to develop, deploy and use CyberInfrastructure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Williams, K.P., Sobral, B.W., Dickerman, A.W.: A Robust Species Tree for the Alphaproteobacteria. J. Bacteriol. 189(13), 4578–4586 (2007)

    Article  Google Scholar 

  2. Williams, K.P., et al.: Phylogeny of Gammaproteobacteria. The Journal of Bacteriology 192(9), 2305–2314 (2010)

    Article  Google Scholar 

  3. Wattam, A.R., et al.: Analysis of ten Brucella genomes reveals evidence for horizontal gene transfer despite a preferred intracellular lifestyle. J. Bacteriol. 191(11), 3569–3579 (2009)

    Article  Google Scholar 

  4. Gillespie, J.J., et al.: An Anomalous Type IV Secretion System in Rickettsia is Evolutionarily Conserved. BMC Microbiology (2009)

    Google Scholar 

  5. Xu, Q., Dziejman, M., Mekalanos, J.J.: Determination of the transcriptome of Vibrio cholerae during intraintestinal growth and midexponential phase in vitro. Proc. Natl. Acad. Sci. U.S.A 100(3), 1286–1291 (2003)

    Article  Google Scholar 

  6. Gilchrist, C.A., et al.: Impact of intestinal colonization and invasion on the Entamoeba histolytica transcriptome. Molecular and Biochemical Parasitology 147(2), 163–176 (2006)

    Article  Google Scholar 

  7. van Erp, K., et al.: Role of strain differences on host resistance and the transcriptional response of macrophages to infection with Yersinia enterocolitica. Physiol Genomics 25(1), 75–84 (2006)

    Article  Google Scholar 

  8. Mazandu, G.K., Opap, K., Mulder, N.J.: Contribution of microarray data to the advancement of knowledge on the Mycobacterium tuberculosis interactome: Use of the random partial least squares approach. Infection, Genetics and Evolution 11(1), 181–189 (2011)

    Article  Google Scholar 

  9. Camarena, L., et al.: Molecular Mechanisms of Ethanol-Induced Pathogenesis Revealed by RNA-Sequencing. PLoS Pathog 6(4), e1000834 (2010)

    Article  Google Scholar 

  10. Sharma, C.M., et al.: The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464(7286), 250–255 (2010)

    Article  Google Scholar 

  11. Sharma, C.M., Vogel, J.: Experimental approaches for the discovery and characterization of regulatory small RNA. Current Opinion in Microbiology 12(5), 536–546 (2009)

    Article  Google Scholar 

  12. Ventura, C.L., et al.: Identification of a Novel <italic>Staphylococcus aureus</italic> Two-Component Leukotoxin Using Cell Surface Proteomics. PLoS ONE 5(7), e11634 (2010)

    Article  MathSciNet  Google Scholar 

  13. Dowling, P., et al.: Recent advances in clinical proteomics using mass spectrometry. Bioanalysis 2(9), 1609–1615 (2010)

    Article  Google Scholar 

  14. Fuhrmann, S., Streitz, M., Kern, F.: How flow cytometry is changing the study of TB immunology and clinical diagnosis. Cytometry Part A 73A(11), 1100–1106 (2008)

    Article  Google Scholar 

  15. Bernstein, J.M., et al.: Further observations on the role of Staphylococcus aureus exotoxins and IgE in the pathogenesis of nasal polyposis. The Laryngoscope, n/a–n/a (2010)

    Google Scholar 

  16. Kim, H., et al.: Inflammation and Apoptosis in Clostridium difficile Enteritis Is Mediated by PGE2 Up-Regulation of Fas Ligand. Gastroenterology 133(3), 875–886 (2007)

    Article  Google Scholar 

  17. Snyder, E.E., et al.: PATRIC: the VBI PathoSystems Resource Integration Center. Nucleic Acids Res. 35(Database issue), D401–D406 (2007)

    Google Scholar 

  18. de la Torre, J.C.: Reverse genetics approaches to combat pathogenic arenaviruses. Antiviral Research 80(3), 239–250 (2008)

    Article  MathSciNet  Google Scholar 

  19. Fricke, W.F., Rasko, D.A., Ravel, J.: The Role of Genomics in the Identification, Prediction, and Prevention of Biological Threats. PLoS Biol. 7(10), e1000217 (2009)

    Article  Google Scholar 

  20. Crasta, O.R., et al.: Genome sequence of Brucella abortus vaccine strain S19 compared to virulent strains yields candidate virulence genes. PLoS ONE 3(5), e2193–e2193 (2008)

    Article  MathSciNet  Google Scholar 

  21. Shendure, J., Ji, H.: Next-generation DNA sequencing. Nat. Biotech. 26(10), 1135–1145 (2008)

    Article  Google Scholar 

  22. Ibarra, J.A., et al.: Induction of Salmonella pathogenicity island 1 under different growth conditions can affect Salmonella-host cell interactions in vitro. Microbiology 156(4), 1120–1133 (2010)

    Article  Google Scholar 

  23. Gao, Q., et al.: Gene expression diversity among Mycobacterium tuberculosis clinical isolates. Microbiology 151(1), 5–14 (2005)

    Article  Google Scholar 

  24. Wen, S., et al.: Inflammatory Gene Profiles in Gastric Mucosa during Helicobacter pylori Infection in Humans. The Journal of Immunology 172(4), 2595–2606 (2004)

    Google Scholar 

  25. Wang, Z., Gerstein, M., Snyder, M.: RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10(1), 57–63 (2009)

    Article  Google Scholar 

  26. Cossart, P., Archambaud, C.: The bacterial pathogen Listeria monocytogenes: an emerging model in prokaryotic transcriptomics. Journal of Biology 8(12), 107 (2009)

    Article  Google Scholar 

  27. Vinayavekhin, N., Homan, E.A., Saghatelian, A.: Exploring Disease through Metabolomics. ACS Chem. Biol. 5(1), 91–103 (2010)

    Article  Google Scholar 

  28. Bochner, B.R.: Global phenotypic characterization of bacteria. FEMS Microbiology Reviews 33(1), 191–205 (2009)

    Article  MathSciNet  Google Scholar 

  29. Benson, D.A., et al.: GenBank. Nucleic Acids Research 39(suppl. 1), D32–D37 (2011)

    Article  MathSciNet  Google Scholar 

  30. Boutet, E., et al.: UniProtKB/Swiss-Prot: The Manually Annotated Section of the UniProt KnowledgeBase. Methods Mol. Biol. 406, 89–112 (2007)

    Google Scholar 

  31. Kanehisa, M., et al.: KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Research 38(suppl. 1), D355–D360 (2010)

    Article  Google Scholar 

  32. Barrett, T., et al.: NCBI GEO: archive for high-throughput functional genomic data. Nucleic Acids Research 37(suppl. 1), D885–D890 (2009)

    Article  Google Scholar 

  33. Parkinson, H., et al.: ArrayExpress—a public repository for microarray gene expression data at the EBI. Nucleic Acids Research 33(suppl. 1), D553–D555 (2005)

    Google Scholar 

  34. Ji, L., et al.: NCBI Peptidome: a new repository for mass spectrometry proteomics data. Nucleic Acids Research 38(suppl. 1), D731–D735 (2010)

    Article  Google Scholar 

  35. Wang, Y., et al.: An overview of the PubChem BioAssay resource. Nucleic Acids Research 38(suppl. 1), D255–D266 (2010)

    Article  Google Scholar 

  36. Aurrecoechea, C., et al.: ApiDB: integrated resources for the apicomplexan bioinformatics resource center. Nucleic Acids Research 35(suppl. 1), D427–D430

    Google Scholar 

  37. Squires, B., et al.: BioHealthBase: informatics support in the elucidation of influenza virus host–pathogen interactions and virulence. Nucleic Acids Research 36(suppl. 1), D497–D503 (2008)

    Google Scholar 

  38. Lawson, D., et al.: VectorBase: a data resource for invertebrate vector genomics. Nucleic Acids Research 37(suppl. 1), D583–D587 (2009)

    Article  Google Scholar 

  39. Henry, C.S., et al.: High-throughput generation, optimization and analysis of genome-scale metabolic models. Nature Biotechnology 28(9), 969–974 (2010)

    Article  Google Scholar 

  40. Dyer, M.D., Murali, T.M., Sobral, B.W.: Computational prediction of host-pathogen protein–protein interactions. Bioinformatics 23(13), i159–i166 (2007)

    Article  Google Scholar 

  41. Bassaganya-Riera, J., Hontecillas, R.: CLA and n-3 PUFA differentially modulate clinical activity and colonic PPAR-responsive gene expression in a pig model of experimental IBD. Clinical Nutrition 25(3), 454–465 (2006)

    Article  Google Scholar 

  42. Ananiadou, S., Sullivan, D., Black, B., Levow, G.-A., Gillespie, J.J., Mao, C., Pyysalo, S., Kolluru, B., Tsujii, J., Sobral, B.: Named Entity Recognition for Bacterial Type IV Secretion Systems (2010) (submitted)

    Google Scholar 

  43. Pyysalo, S., Tomoko, O., Cho, H.-C., Sullivan, D., Mao, C., Sobral, B., Tsujii, J., Ananiadou, S.: Towards Event Extraction from Full Texts on Infectious Diseases. In: Proceedings of the 2010 Workshop on Biomedical Natural Language Processing. Association for Computational Linguistics, Uppsala (2010)

    Google Scholar 

  44. Noy, N.F., et al.: BioPortal: ontologies and integrated data resources at the click of a mouse. Nucleic Acids Research 37(suppl. 2), W170–W173 (2009)

    Article  MathSciNet  Google Scholar 

  45. Sullivan, D.E., Gabbard Jr., J.L., Shukla, M., Sobral, B.: Data integration for dynamic and sustainable systems biology resources: challenges and lessons learned. Chemistry & Biodiversity 7(5), 1124–1141 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sobral, B., Mao, C., Shukla, M., Sullivan, D., Zhang, C. (2013). Informatics-Driven Infectious Disease Research. In: Fred, A., Filipe, J., Gamboa, H. (eds) Biomedical Engineering Systems and Technologies. BIOSTEC 2011. Communications in Computer and Information Science, vol 273. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29752-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29752-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29751-9

  • Online ISBN: 978-3-642-29752-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics