Skip to main content

Hybrid Optical–Electrical Brain Computer Interfaces, Practices and Possibilities

  • Chapter
  • First Online:
Towards Practical Brain-Computer Interfaces

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Noninvasive brain computer interfaces (BCI) rely on measurements taken from the scalp in order to directly infer changes in brain activation associated with volitional thought. There is limited scalp over brain regions of interest from which to take such measurements therefore efficient utilisation of the measurement area is important. Hybrid optical–electrical sensors represent one method through which this improvement in measurement area utilization is achievable. In particular, optical measurements of brain activity through techniques such as near infrared spectroscopy (NIRS) rely on geometrical arrangements of optodes which do not constrain the placements of electrodes associated with electroencephalography. Consequently a BCI making use of such a hybrid sensor arrangement is capable of extracting more information during brain activation. In addition, the different aspects of brain physiology under measurement lead to a compound signal which more completely characterises the active brain area. This chapter provides an introduction to such hybrid systems with an emphasis on the less well-known optical measurement technology embodied in NIRS systems. Topics covered include the physics of the measurement, description of the physiological dynamics, an overview of sensor technology, signal characteristics, processing and analysis in a BCI context. The chapter concludes with a discussion on current practise in this emerging field with some commentary on future directions and possibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arenth, P.M., Ricker, J.H., Schultheis, M.T.: Applications of functional near-infrared spectroscopy (fNIRS) to Neurorehabilitation of cognitive disabilities. Clin. Neuropsychol. 21(1), 38–57 (2007)

    Google Scholar 

  2. Arridge, S.R.: Optical tomography in medical imaging. Inverse Probl. 15(2), R41–R93 (1999)

    Google Scholar 

  3. Bernardinelli, Y., Salmon, C., Jones, E.V., Farmer, W.T., Stellwagen, D., Murai, K.K.: Astrocytes display complex and localized calcium responses to single-neuron stimulation in the hippocampus. J. Neurosci. 31(24), 8905–8919 (2011)

    Google Scholar 

  4. Brunner, P., Bianchi, L., Guger, C., Cincotti, F., Schalk, G.: Current trends in hardware and software for brain–computer interfaces (BCIs). J. Neural Eng. 8(2), 025001 (2011)

    Google Scholar 

  5. Buxton, R.B., Wong, E.C., Frank, L.R.: Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magn. Reson. Med. 39(6), 855–864 (1998)

    Google Scholar 

  6. Cauli, B., Tong, X.K., Rancillac, A., Serluca, N., Lambolez, B., Rossier, J., Hamel, E.: Cortical GABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways. J. Neurosci. 24(41), 8940–8949 (2004)

    Google Scholar 

  7. Cloutier, M., Bolger, F.B., Lowry, J.P., Wellstead, P.: An integrative dynamic model of brain energy metabolism using in vivo neurochemical measurements. J. Comput. Neurosci. 27(3), 391–414 (2009)

    Google Scholar 

  8. Cooper, R.J., Everdell, N.L., Enfield, L.C., Gibson, A.P., Worley, A., Hebden, J.C.: Design and evaluation of a probe for simultaneous EEG and near-infrared imaging of cortical activation. Phys. Med. Biol. 54(7), 2093–2102 (2009)

    Google Scholar 

  9. Cope, M.: The application of near-infrared spectroscopy to non-invasive monitoring of cerebral oxygenation in the newborn infant. PhD thesis, University of London (1991)

    Google Scholar 

  10. Coyle, S., Ward, T., Markham, C., McDarby, G.: On the suitability of near-infrared (NIR) systems for next-generation brain–computer interfaces. Physiol. Meas. 25(4), 815–822 (2004)

    Google Scholar 

  11. Coyle, S.M., Ward, T.E., Markham, C.M.: Brain–computer interface using a simplified functional near-infrared spectroscopy system. J. Neural Eng. 4(3), 219–226 (2007)

    Google Scholar 

  12. Coyle, S., Ward, T., Markham, C.: Physiological noise in near-infrared spectroscopy: implications for optical brain computer interfacing. Conf. Proc. IEEE Eng. Med. Biol. Soc. 6, 4540–4543 (2004)

    Google Scholar 

  13. Cui, X., Bray, S., Reiss, A.L.: Functional near infrared spectroscopy (NIRS) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics. Neuroimage. 49(4), 3039–3046 (2010)

    Google Scholar 

  14. Davis, T.L., Kwong, K.K., Weisskoff, R.M., Rosen, B.R.: Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc. Natl. Acad. Sci. USA. 95(4), 1834–1939 (1998)

    Google Scholar 

  15. Dobkin, B.H.: Brain–computer interface technology as a tool to augment plasticity and outcomes for neurological rehabilitation. J. Physiol. 579 (Pt 3), 637–642 (2007)

    Google Scholar 

  16. Falk, T.H., Guirgis, M., Power, S., Chau, T.T.: Taking NIRS-BCIs outside the lab: towards achieving robustness against environment noise. IEEE Trans. Neural Syst. Rehabil. Eng. 19(2), 136–146 (2011)

    Google Scholar 

  17. Fazli, S., Mehnert, J., Steinbrink, J., Curio, G., Villringer, A., Müller, K.R., Blankertz, B.: Enhanced performance by a hybrid NIRS-EEG brain computer interface. Neuroimage. 59(1), 519–29 (2011)

    Google Scholar 

  18. Filosa, J.A.: Vascular tone and neurovascular coupling: considerations toward an improved in vitro model. Front. Neuroenergetics. 2(16), 1–8 (2010)

    Google Scholar 

  19. Gordon, G.R., Choi, H.B., Rungta, R.L., Ellis-Davies, G.C., MacVicar, B.A.: Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature. 456(7223), 745–749 (2008)

    Google Scholar 

  20. Green, A.M., Kalaska, J.F.: Learning to move machines with the mind. Trends Neurosci. 34(2), 61–75 (2011)

    Google Scholar 

  21. Jöbsis, F.F.: Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198(4323), 1264–1267 (1977)

    Google Scholar 

  22. Kilner, J.M., Mattout, J., Henson, R., Friston, K.J.: Hemodynamic correlates of EEG: a heuristic. Neuroimage 28(1), 280–286 (2005)

    Google Scholar 

  23. Kleinfeld, D., Blinder, P., Drew, P.J., Driscoll, J.D., Muller, A., Tsai, P.S., Shih, A.Y.: A guide to delineate the logic of neurovascular signaling in the brain. Front. Neuroenergetics. 3, 1 (2011)

    Google Scholar 

  24. Laufs, H., Holt, J.L., Elfont, R., Krams, M., Paul, J.S., Krakow, K., Kleinschmidt, A.: Where the BOLD signal goes when alpha EEG leaves. Neuroimage 31(4), 1408–1418 (2006)

    Google Scholar 

  25. Lauritzen, M., Gold, L.: Brain function and neurophysiological correlates of signals used in functional neuroimaging. J. Neurosci. 23(10), 3972–3980 (2003)

    Google Scholar 

  26. Leamy, D.J., Ward, T.E.: A novel co-locational and concurrent fNIRS/EEG measurement system: design and initial results. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010, 4230–4233 (2010)

    Google Scholar 

  27. Leamy, D.J., Ward, T.E., Sweeny, K.T.: Functional near infrared spectroscopy (fNIRS) synthetic data generation. Conf. Proc. IEEE Eng. Med. Biol. Soc. 6589–6592 (2011)

    Google Scholar 

  28. Leff, D.R., Orihuela-Espina, F., Elwell, C.E., Athanasiou, T., Delpy, D.T., Darzi, A.W., Yang, G.Z.: Assessment of the cerebral cortex during motor task behaviours in adults: A systematic review of functional near infrared spectroscopy (fNIRS) studies. Neuroimage 54(4), 2922–2936 (2011)

    Google Scholar 

  29. Lin, W.H., Hao, Q., Rosengarten, B., Leung, W.H., Wong, K.S.: Impaired neurovascular coupling in ischaemic stroke patients with large or small vessel disease. Eur. J. Neurol. 18(5), 731–736 (2011)

    Google Scholar 

  30. Lloyd-Fox, S., Blasi, A., Elwell, C.E.: Illuminating the developing brain: the past, present and future of functional near infrared spectroscopy. Neurosci. Biobehav. Rev. 34(3), 269–284 (2010)

    Google Scholar 

  31. Mandeville, J.B., Marota, J.J., Ayata, C., Zaharchuk, G., Moskowitz, M.A., Rosen, B.R., Weisskoff, R.M.: Evidence of a cerebrovascular postarteriole windkessel with delayed compliance. J. Cereb. Blood Flow Metab. 19(6), 679–689 (1999)

    Google Scholar 

  32. Mansouri, C., L´huillier, J.P., Kashou, N.H., Humeau, A.: Depth sensitivity analysis of functional near-infrared spectroscopy measurement using three-dimensional Monte Carlo modelling-based magnetic resonance imaging. Lasers Med. Sci. 25(3), 431–438 (2010)

    Google Scholar 

  33. Moore, C.I., Cao, R.: The hemo-neural hypothesis: on the role of blood flow in information processing. J. Neurophysiol. 99(5), 2035–2047 (2008)

    Google Scholar 

  34. Nair, D.G.: About being BOLD. Brain Res. Rev. 50(2), 229–243 (2005)

    Google Scholar 

  35. Panatier, A., Vallée, J., Haber, M., Murai, K.K., Lacaille, J.C., Robitaille, R.: Astrocytes are endogenous regulators of Basal transmission at central synapses. Cell 146(5), 785–798 (2011)

    Google Scholar 

  36. Pelligrino, D.A., Vetri, F., Xu, H.L.: Purinergic mechanisms in gliovascular coupling. Semin. Cell Dev. Biol. 22(2), 229–236 (2011)

    Google Scholar 

  37. Pfurtscheller, G., Lopes da Silva, F.H.: Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110(11), 1842–1857 (1999)

    Google Scholar 

  38. Richards, L., Hanson, C., Wellborn, M., Sethi, A.: Driving motor recovery after stroke. Top Stroke Rehabil. 15(5), 397–411 (2008)

    Google Scholar 

  39. Riera, J., Sumiyoshi, A., Brain oscillations. Ideal scenery to understand the neurovascular coupling. Curr. Op. Neurobiol. 23, 374–381 (2010)

    Google Scholar 

  40. Rosa, M.J., Daunizeau, J., Friston, K.J.: EEG-fMRI integration: A critical review of biophysical modeling and data analysis approaches. J. Integr. Neurosci. 9(4), 453–476 (2010)

    Google Scholar 

  41. Rouach, N., Koulakoff, A., Abudara, V., Willecke, K., Giaume, C.: Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322(5907), 1551–1555 (2008)

    Google Scholar 

  42. Roy, C.S., Sherrington, C.S.: On the regulation of the blood supply of the brain. J. Physiol. 11, 85–108 (1890)

    Google Scholar 

  43. Scheeringa, R., Fries, P., Petersson, K.M., Oostenveld, R., Grothe, I., Norris, D.G., Hagoort, P., Bastiaansen, M.C.: Neuronal dynamics underlying high- and low-frequency EEG oscillations contribute independently to the human BOLD signal. Neuron 69(3), 572–583 (2011)

    Google Scholar 

  44. Schomer, D.L., Lopes da Silva, F.H.: (eds.) Niedermeyer´s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. 6th Edition, Lippincott, Williams and Wilkins, Philadelphia (Penn.) (2011)

    Google Scholar 

  45. Shibasaki, H.: Human brain mapping: hemodynamic response and electrophysiology. Clin. Neurophysiol. 119(4), 731–743 (2008)

    Google Scholar 

  46. Sitaram, R., Caria, A., Birbaumer, N.: Hemodynamic brain–computer interfaces for communication and rehabilitation. Neural Netw. 22(9), 1320–1328 (2009)

    Google Scholar 

  47. Sweeney, K.T., Leamy, D.J., Ward, T.E., McLoone, S.: Intelligent artifact classification for ambulatory physiological signals. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010, 6349–6352 (2010)

    Google Scholar 

  48. Sweeney, K.T., Ayaz, H., Ward, T.E., Izzetoglu, M., McLoone, S.F., Onaral, B.: A Methodology for Validating Artifact Removal Techniques for fNIRS. Conf. Proc. IEEE Eng. Med. Biol. Soc. 4943–4946 (2011)

    Google Scholar 

  49. Wallois, F., Patil, A., Héberlé, C., Grebe, R.: EEG-NIRS in epilepsy in children and neonates. Neurophysiol. Clin. 40(5–6), 281–292 (2010)

    Google Scholar 

  50. Ward, T.E., Soraghan, C.J., Matthews, F., Markham, C.: A concept for extending the applicability of constraint-induced movement therapy through motor cortex activity feedback using a neural prosthesis. Comput. Intell. Neurosci. 51363 (2007)

    Google Scholar 

  51. Webster, J.G. (eds.): Medical Instrumentation, Application and Design, 3rd edn. Wiley, Hoboken, N.J. (1998)

    Google Scholar 

  52. Zonta, M., Angulo, M.C., Gobbo, S., Rosengarten, B., Hossmann, K.A., Pozzan, T., Carmignoto, G.: Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat. Neurosci. 6(1), 43–50 (2003)

    Google Scholar 

  53. Zlokovic, B., Apuzzo, M.: Strategies to circumvent vascular barriers of the central nervous system. Neurosurgery 43, 877–878 (1998)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Science Foundation Ireland: Research Frontiers Program 2009, Grant No. 09/RFP/ECE2376.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomas E. Ward .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ward, T.E. (2012). Hybrid Optical–Electrical Brain Computer Interfaces, Practices and Possibilities. In: Allison, B., Dunne, S., Leeb, R., Del R. Millán, J., Nijholt, A. (eds) Towards Practical Brain-Computer Interfaces. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29746-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29746-5_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29745-8

  • Online ISBN: 978-3-642-29746-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics