Skip to main content

Recent and Upcoming BCI Progress: Overview, Analysis, and Recommendations

  • Chapter
  • First Online:
Towards Practical Brain-Computer Interfaces

Abstract

Brain–computer interfaces (BCIs) are finally moving out of the laboratory and beginning to gain acceptance in real-world situations. As BCIs gain attention with broader groups of users, including persons with different disabilities and healthy users, numerous practical questions gain importance. What are the most practical ways to detect and analyze brain activity in field settings? Which devices and applications are most useful for different people? How can we make BCIs more natural and sensitive, and how can BCI technologies improve usability? What are some general trends and issues, such as combining different BCIs or assessing and comparing performance? This book chapter provides an overview of the different sections of this book, providing a summary of how authors address these and other questions. We also present some predictions and recommendations that ensue from our experience from discussing these and other issues with our authors and other researchers and developers within the BCI community. We conclude that, although some directions are hard to predict, the field is definitely growing and changing rapidly, and will continue doing so in the next several years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allison, B.Z.: Toward ubiquitous BCIs. Brain–computer interfaces. The Frontiers Collection, pp. 357–387 (2010)

    Google Scholar 

  2. Allison, B.Z.: Trends in BCI research: progress today, backlash tomorrow? XRDS: Crossroads. The ACM Magazine for Students 18(1), 18–22 (2011). doi:10.1145/2000775.2000784

    Google Scholar 

  3. Allison, B.Z., Leeb, R., Brunner, C., Müller-Putz, G.R., Bauernfeind, G., Kelly, J.W., and Neuper, C. (2012). Toward smarter BCIs: Extending BCIs through hybridization and intelligent control. Journal of Neural Engineering, 013001.

    Google Scholar 

  4. Bin, G., Gao, X., Wang, Y., Li, Y., Hong, B., Gao, S.: A high-speed BCI based on code modulation VEP. J. Neural Eng. 8, 025,015, (2011). doi: 10.1088/1741–2560/8/2/025015

    Google Scholar 

  5. Brunner, P., Ritaccio, A.L., Emrich, J.F., Bischof, H., Schalk, G.: Rapid communication with a “P300” matrix speller using electrocorticographic signals (ECoG). Front. Neurosci. 5 (2011)

    Google Scholar 

  6. Buch, E., Weber, C., Cohen, L.G., Braun, C., Dimyan, M.A., Ard, T., Mellinger, J., Caria, A., Soekadar, S., Fourkas, A., Birbaumer, N.: Think to move: a neuromagnetic brain–computer interface (BCI) system for chronic stroke. Stroke 39, 910–917 (2008)

    Google Scholar 

  7. Carlson, T., Monnard, G., Leeb, R., Millán, J.: Evaluation of Proportional and Discrete Shared Control Paradigms for Low Resolution User Inputs. Proceedings of the 2011 IEEE International Conference on Systems, Man, and Cybernetics, pp. 1044–1049 (2011)

    Google Scholar 

  8. Demetriades, A.K., Demetriades, C.K., Watts, C., Ashkan, K.: Brain-machine interface: The challenge of neuroethics. Surgeon 8, 267–269 (2010)

    Google Scholar 

  9. Flemisch, O., Adams, A., Conway, S., Goodrich, K., Palmer, M., Schutte, P.: The H-Metaphor as a Guideline for Vehicle Automation and Interaction. (NASA/TM–2003–212672) (2003)

    Google Scholar 

  10. Gürkök, H., Nijholt, A.: Brain–computer interfaces for multimodal interaction: a survey and principles. International Journal of Human–Computer Interaction, ISSN 1532–7590 (electronic) 1044–7318 (paper), Taylor & Francis, Oxford, United Kingdom (2011)

    Google Scholar 

  11. Kübler, A., Kotchoubey, B., Kaiser, J., Wolpaw, J.R., Birbaumer, N.: Brain–computer communication: unlocking the locked in. Psychol. Bull. 127(3), 358–375 (2001)

    Google Scholar 

  12. Lecuyer, A., Lotte, F., Reilly, R., Leeb, R., Hirose, M., Slater, M.: Brain–computer interfaces, virtual reality, and videogames. Computer 41(10), 66–72 (2008)

    Google Scholar 

  13. Leeb, R., Keinrath, C., Friedman, D., Guger, C., Scherer, R., Neuper, C., Garau, M., Antley, A., Steed, A., Slater, M., Pfurtscheller, G.: Walking by thinking: the brainwaves are crucial, not the muscles! Presence (Camb.) 15, 500–514 (2006)

    Google Scholar 

  14. Leeb, R., Sagha, H., Chavarriaga, R., Millán, J.: A hybrid brain–computer interface based on the fusion of electroencephalographic and electromyographic activities. J. Neural Eng. 8(2), 025,011, (2011). doi:10.1088/1741–2560/8/2/025011, http://dx.doi.org/10.1088/1741-2560/8/2/025011

    Google Scholar 

  15. Long, J., Li, Y., Yu, T., Gu, Z.: Target selection with hybrid feature for BCI-based 2-D cursor control. IEEE Trans. Biomed. Eng. 59(1), 132–140 (2012)

    Google Scholar 

  16. F. Lotte, “Brain-Computer Interfaces for 3D Games: Hype or Hope?”, Foundations of Digital Games (FDG’2011), pp. 325-327, 2011. ACM, New York, USA

    Google Scholar 

  17. Millán, J., Carmena, J.M.: Invasive or noninvasive: understanding brain-machine interface technology. IEEE Eng. Med. Biol. Mag. 29(1), 16–22 (2010)

    Google Scholar 

  18. Millán, J., Rupp, R., Müller-Putz, G., Murray-Smith, R., Giugliemma, C., Tangermann, M., Vidaurre, C., Cincotti, F., Kübler, A., Leeb, R., Neuper, C., Müller, K., Mattia, D.: Combining brain–computer interfaces and assistive technologies: State-of-the-art and challenges. Front. Neurosci. 4, 161 (2010). doi:10.3389/fnins.2010.00161

    Google Scholar 

  19. Moore, M.M.: Real-world applications for brain–computer interface technology. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 162–165 (2003)

    Google Scholar 

  20. Müller-Putz, G.R., Scherer, R., Pfurtscheller, G., Rupp, R.: Brain–computer interfaces for control of neuroprostheses: From synchronous to asynchronous mode of operation. Biomedizinische Technik 51, 57–63 (2006)

    Google Scholar 

  21. Müller-Putz, G.R., Breitwieser, C., Cincotti, F., Leeb, R., Schreuder, M., Leotta, F., Tavella, M., Bianchi, L., Kreilinger, A., Ramsay, A., Rohm, M., Sagebaum, M., Tonin, L., Neuper, C., Millán, J.: Tools for brain–computer interaction: A general concept for a hybrid BCI. Front. Neuroinform. 5, 30 (2011)

    Google Scholar 

  22. Pfurtscheller, G., Allison, B., Bauernfeind, G., Brunner, C., Solis Escalante, T., Scherer, R., Zander, T., Müller-Putz, G., Neuper, C., Birbaumer, N.: The hybrid BCI. Front. Neurosci. 4, 42 (2010)

    Google Scholar 

  23. Racine, E., Waldman, S., Rosenberg, J., Illes, J.: Contemporary neuroscience in the media. Soc. Sci. Med. 71(4), 725–733 (2010)

    Google Scholar 

  24. Regan, D.: Human brain electrophysiology: evoked potentials and evoked magnetic fields in science and medicine. Elsevier, New York (1989)

    Google Scholar 

  25. Su, Y., Qi, Y., Luo, J.X., Wu, B., Yang, F., Li, Y., Zhuang, Y.T., Zheng, X.X., Chen, W.D.: A hybrid brain–computer interface control strategy in a virtual environment. J. Zhejiang Univ. Sci. C 12, 351–361, (2011). doi:10.1631/jzus.C1000208

    Google Scholar 

  26. Tonin, L., Leeb, R., Tavella, M., Perdikis, S., Millán, J.: The role of shared-control in BCI-based telepresence. Proceedings of 2010 IEEE International Conference on Systems, Man and Cybernetics, pp. 1462–1466 (2010)

    Google Scholar 

  27. Vanhooydonck, D., Demeester, E., Nuttin, M., Van Brussel, H.: Shared control for intelligent wheelchairs: An implicit estimation of the user intention. Proc. 1st Int. Workshop Advances in Service Robot, pp. 176–182 (2003)

    Google Scholar 

  28. Volosyak, I.: SSVEP-based Bremen-BCI interface – boosting information transfer rates. J. Neural Eng. 8, 036,020 (2011). doi: 10.1088/1741–2560/8/3/036020

    Google Scholar 

  29. Williamson, J., Murray-Smith, R., Blankertz, B., Krauledat, M., Müller, K.: Designing for uncertain, asymmetric control: Interaction design for brain–computer interfaces. Int J. Hum. Comput. Stud. 67(10), 827–841 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brendan Z. Allison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Allison, B.Z., Dunne, S., Leeb, R., del R. Millán, J., Nijholt, A. (2012). Recent and Upcoming BCI Progress: Overview, Analysis, and Recommendations. In: Allison, B., Dunne, S., Leeb, R., Del R. Millán, J., Nijholt, A. (eds) Towards Practical Brain-Computer Interfaces. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29746-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29746-5_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29745-8

  • Online ISBN: 978-3-642-29746-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics