Advertisement

DAG-Based Software Frameworks for PDEs

  • Martin Berzins
  • Qingyu Meng
  • John Schmidt
  • James C. Sutherland
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7155)

Abstract

The task-based approach to software and parallelism is well-known and has been proposed as a potential candidate, named the silver model, for exascale software. This approach is not yet widely used in the large-scale multi-core parallel computing of complex systems of partial differential equations. After surveying task-based approaches we investigate how well the Uintah software and an extension named Wasatch fit in the task-based paradigm and how well they perform on large scale parallel computers. The conclusion is that these approaches show great promise for petascale but that considerable algorithmic challenges remain.

Keywords

Directed Acyclic Graph Task-Based Parallelism Scalability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amarasinghe, S., Campbell, D., Carlson, W., Chien, A., Dally, W., Elnohazy, E., Hall, M., Harrison, R., Harrod, W., Hill, K., Hiller, J., Karp, S., Koelbel, C., Koester, D., Kogge, P., Levesque, J., Reed, D., Sarkar, V., Schreiber, R., Richards, M., Scarpelli, A., Shalf, J., Snavely, A., Sterling, T.: Exascale computing study: Software challenges in achieving exascale systems. Technical Report ECSS Report 101909, Georgia Institute of Technology (2009)Google Scholar
  2. 2.
    Atlas, S., Banerjee, S., Cummings, J.C., Hinker, P.J., Srikant, M., Reynders, J.V.W., Tholburn, M.: POOMA: A high-performance distributed simulation environment for scientific applications. In: Supercomputing 1995 Proceedings (December 1995)Google Scholar
  3. 3.
    Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: Efficient management of parallelism in object oriented numerical software libraries. In: Arge, E., Bruaset, A.M., Langtangen, H.P. (eds.) Modern Soft.Tools in Scien. Comput., pp. 163–202. Birkhäuser (1997)Google Scholar
  4. 4.
    Berger, M., Rigoutsos, I.: An algorithm for point clustering and grid generation. IEEE Trans. Systems Man Cybernet. 21(5), 1278–1286 (1991)CrossRefGoogle Scholar
  5. 5.
    Berzins, M., Luitjens, J., Meng, Q., Harman, T., Wight, C.A., Peterson, J.R.: Uintah - a scalable framework for hazard analysis. In: TG 2010: Proceedings of the 2010 TeraGrid Conference. ACM, New York (2010)Google Scholar
  6. 6.
    Chandramowlishwaran, A., Knobe, K., Vuduc, R.: Performance evaluation of Concurrent Collections on high-performance multicore computing systems. In: Proc. IEEE Int’l. Parallel and Distributed Processing Symp (IPDPS), Atlanta, GA, USA (April 2010)Google Scholar
  7. 7.
    Falgout, R.D., Jones, J.E., Yangi, U.M.: The design and implementation of hypre, a library of parallel high performance preconditioners. In: Numerical Solution of Partial Differential Equations on Parallel Computers, pp. 267–294. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Haidar, H., Herault, T., Kurzak, J., Langou, J., Lemariner, P., Ltaief, H., Luszczek, P., YarKhan, A., Dongarra, J.: Distibuted dense numerical linear algebra algorithms on massively parallel architectures: Dplasma. Technical report, Innovative Computing Laboratory, University of Tennessee (2010)Google Scholar
  9. 9.
    Guilkey, J.E., Harman, T.B., Banerjee, B.: An eulerian-lagrangian approach for simulating explosions of energetic devices. Computers and Structures 85, 660–674 (2007)CrossRefGoogle Scholar
  10. 10.
    Spinti, J., Thornock, J., Eddings, E., Smith, P.J., Sarofim, A.: Heat transfer to objects in pool fires, in transport phenomena in fires. In: Transport Phenomena in Fires, Southampton, U.K. WIT Press (2008)Google Scholar
  11. 11.
    Kale, L.V., Bohm, E., Mendes, C.L., Wilmarth, T., Zheng, G.: Programming petascale applications with Charm++ and AMPI. Petascale Computing: Algorithms and Applications 1, 421–441 (2007)CrossRefGoogle Scholar
  12. 12.
    Kashiwa, B.A.: A multifield model and method for fluid-structure interaction dynamics. Technical Report LA-UR-01-1136, Los Alamos National Laboratory, Los Alamos (2001)Google Scholar
  13. 13.
    Kurzak, J., Ltaief, H., Dongarra, J., Badia, R.: Scheduling dense linear algebra operations on multicore processors. Concurrency and Computation: Practice and Experience 22(1), 15–44 (2010)CrossRefGoogle Scholar
  14. 14.
    Luitjens, J., Berzins, M.: Improving the performance of Uintah: A large-scale adaptive meshing computational framework. In: Proceedings of the 24th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2010 (2010)Google Scholar
  15. 15.
    Luitjens, J., Berzins, M.: Scalable parallel regridding algorithms for block-structured adaptive mesh renement. In: Concurrency And Computation: Practice And Experience (2011)Google Scholar
  16. 16.
    Luitjens, J., Berzins, M., Henderson, T.: Parallel space-filling curve generation through sorting: Research articles. Concurr. Comput.: Pract. Exper. 19(10), 1387–1402 (2007)CrossRefGoogle Scholar
  17. 17.
    Martin, I., Tirado, F.: Relationships between efficiency and execution time of full multigrid methods on parallel computers. IEEE Transactions on Parallel and Distributed Systems 8(6), 562–573 (1997)CrossRefGoogle Scholar
  18. 18.
    Meng, Q., Berzins, M., Schmidt, J.: Using hybrid parallelism to improve memory use in the Uintah framework. In: TG 2011: Proceedings of the 2011 TeraGrid Conference. ACM, New York (2011)Google Scholar
  19. 19.
    Meng, Q., Luitjens, J., Berzins, M.: Dynamic task scheduling for the Uintah framework. In: Proceedings of the 3rd IEEE Workshop on Many-Task Computing on Grids and Supercomputers, MTAGS 2010 (2010)Google Scholar
  20. 20.
    Notz, P.K., Pawlowski, R.P., Sutherland, J.C.: Graph-based software design for managing complexity and enabling concurrency in multiphysics pde software. ACM Transactions on Mathematical Software (submitted)Google Scholar
  21. 21.
    Parker, S.G.: A component-based architecture for parallel multi-physics pde simulation. Future Gener. Comput. Syst. 22(1), 204–216 (2006)CrossRefGoogle Scholar
  22. 22.
    Parker, S.G., Guilkey, J., Harman, T.: A component-based parallel infrastructure for the simulation of fluid-structure interaction. Engineering with Computers 22, 277–292 (2006)CrossRefGoogle Scholar
  23. 23.
    Parker, S.G., Guilkey, J.E., Harman, T.: A component-based parallel infrastructure for the simulation of fluid structure interaction. Eng. with Comput. 22(3), 277–292 (2006)CrossRefGoogle Scholar
  24. 24.
    Sarkar, V.: Partitioning and Scheduling Parallel Programs for Multiprocessors. MIT Press, Cambridge (1989)zbMATHGoogle Scholar
  25. 25.
    Sarkar, V., Skedzielewski, S., Miller, P.: An automatically partitioning compiler for sisal. In: Proceedings of the Conference on CONPAR 1988, pp. 376–383. Cambridge University Press, New York (1989)Google Scholar
  26. 26.
    Sinnen, O., Sousa, L.A., Frode, E.S.: Toward a realistic task scheduling model. IEEE Trans. Parallel Distrib. Syst. 17, 263–275 (2006)CrossRefGoogle Scholar
  27. 27.
    Sulsky, D., Zhou, S., Schreyer, H.L.: Application of a particle-in-cell method to solid mechanics. Computer Physics Communications 87, 236–252 (1995)zbMATHCrossRefGoogle Scholar
  28. 28.
    Vajracharya, S., Karmesin, S., Beckman, P., Crotinger, J., Malony, A., Shende, S., Oldehoeft, R., Smith, S.: Smarts: Exploiting temporal locality and parallelism through vertical execution (1999)Google Scholar
  29. 29.
    Valiant, L.G.: Optimally universal parallel computers, pp. 17–20. Prentice Hall Press, Upper Saddle River (1989)Google Scholar
  30. 30.
    Sarkar, V., Harrod, W., Snavely, A.E.: Scidac review: Software challenges in extreme scale systems. Journal of Physics: Conference Series 180 012045 (2009)Google Scholar
  31. 31.
    Budimlic, Z., Burke, M., Cavé, V., Knobe, K., Lowney, G., Newton, R., Palsberg, J., Peixotto, D.M., Sarkar, V., Schlimbach, F., Tasirlar, S.: Concurrent collections. Scientific Programming 18(3-4), 203–217 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Martin Berzins
    • 1
  • Qingyu Meng
    • 1
  • John Schmidt
    • 1
  • James C. Sutherland
    • 2
  1. 1.Scientific Computing and Imaging InstituteUniversity of UtahSalt Lake CityUSA
  2. 2.Institute for Clean and Secure EnergyUniversity of UtahSalt Lake CityUSA

Personalised recommendations