Mining Association Rules on Grid Platforms

  • Raja Tlili
  • Yahya Slimani
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7155)


In this paper we propose a dynamic load balancing strategy to enhance the performance of parallel association rule mining algorithms in the context of a Grid computing environment. This strategy is built upon a distributed model which necessitates small overheads in the communication costs for load updates and for both data and work transfers. It also supports the heterogeneity of the system and it is fault tolerant.


Association rules Performance problem Distributed algorithms Grid computing Dynamic load balancing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Generator of databases site,
  2. 2.
    Agrawal, R., Shafer, J.C.: Parallel mining of association rules (December 1996)Google Scholar
  3. 3.
    Agrawal, R., Srikant, R.: Fast algorithms for mining associations rules in large databases (September 1994)Google Scholar
  4. 4.
    Cappello, F., Caron, E., Dayde, M., Desprez, F., Jegou, Y., Primet, P.V.B., Jeannot, E., Lanteri, S., Leduc, J., Melab, N., Mornet, G., Quetier, B., Richard, O.: Grid’5000: a large scale and highly reconfigurable grid experimental testbed (November 2005)Google Scholar
  5. 5.
    Casavant, T.L., Kuhl, J.G.: Taxonomy of scheduling in general purpose distributed computing systems (February 1988)Google Scholar
  6. 6.
    Devine, K., Boman, E., Heaphy, R., Hendrickson, B.: New challenges in dynamic load balancing (2005)Google Scholar
  7. 7.
    Fiolet, V., Toursel, B.: Distributed data mining. in scalable computing: Practice and expériences (scpe) (March 2005)Google Scholar
  8. 8.
    Han, J., Kamber, M.: Data mining: concepts and techniques (2000)Google Scholar
  9. 9.
    Foster, I., Kesselman, C.: The Grid2: Blue print for a New Computing Infrastructure (2003)Google Scholar
  10. 10.
    Li, Y., Lan, Z.: A survey of load balancing in grid computing (2004)Google Scholar
  11. 11.
    Orlando, S., Palmerini, P., Perego, R.: A scalable multi-strategy algorithm for counting frequent sets (2002)Google Scholar
  12. 12.
    Perez, M., Sanchez, A., Robles, V., Herrero, P., Pena, J.: Design and implementation of a data mining grid-aware architecture (2007)Google Scholar
  13. 13.
    Renard, H.: Equilibrage de Charge et Redistribution de donnes sur Plates-formes htrognes (December 2005)Google Scholar
  14. 14.
    Wang, K., Tang, L., Han, J., Liu, J.: Top down fp-growth for association rule mining in pakdd 2002 (May 2002)Google Scholar
  15. 15.
    Willebeek-LeMair, M.H., Reeves, A.P.: Strategies for dynamic load balancing on highly parallel computers (September 1993)Google Scholar
  16. 16.
    Yang, C.T., Shih, W.C., Tseng, S.S.: A heuristic data distribution scheme for data mining applications on grid environments (June 2008)Google Scholar
  17. 17.
    Yu, K.M., Zhou, J.L.: A weighted load-balancing parallel apriori algorithm for association rule mining (2008)Google Scholar
  18. 18.
    Zaki, M.: Parallel and distributed association mining: A survey (December 1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Raja Tlili
    • 1
  • Yahya Slimani
    • 1
  1. 1.Department of Computer ScienceFaculty of Sciences of TunisiaTunisTunisia

Personalised recommendations