Skip to main content

Introduction

  • Chapter
  • First Online:
Optical Cooling Using the Dipole Force

Part of the book series: Springer Theses ((Springer Theses))

  • 619 Accesses

Abstract

The fundamental quest to know more about the nature of the world around us and the universe of which it is both an incomprehensibly insignificant part, objectively speaking, and a rather important part, subjectively speaking, has driven mankind to the edge of sanity and sometimes beyond. Amidst all of this, cold atoms can be seen as the ideal prototypical system with which to explore nature. In contrast to the sledgehammer approach so typical of high-energy physics experiments, clouds of ultracold matter provide an almost blank canvas that one can use as a microscope to probe the behaviour of matter at the atomic, and even subatomic, scale. Optical cooling is perhaps the only direct way of producing these ultracold clouds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    I am somewhat fond, however unfairly, of mentioning string theory in this context. See Ref. [1] for an overview into the birth of string theory that suggests otherwise.

  2. 2.

    Ultracold di-alkali molecules are reasonably common (see Refs. [3, 4] for reviews), but require ultracold atoms as building blocks.

References

  1. Shapiro, J. A. Reminiscence on the birth of string theory. (2007). arXiv:0711.3448 (e-print).

    Google Scholar 

  2. Hudson, J. J., Sauer, B. E., Tarbutt, M. R.& Hinds, E. A. Measurement of the electron electric dipole moment using YbF molecules. Phys. Rev. Lett. 89, 023003 (2002).

    Google Scholar 

  3. Jones, K. M., Tiesinga, E., Lett, P. D.& Julienne, P. S. Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering. Rev. Mod. Phys. 78, 483 (2006).

    Google Scholar 

  4. Köhler, T., GĂ³ral, K.& Julienne, P. S. Production of cold molecules via magnetically tunable Feshbach resonances. Rev. Mod. Phys. 78, 1311 (2006).

    Google Scholar 

  5. Stuhl, B. K., Sawyer, B. C., Wang, D.& Ye, J. Magneto-optical trap for polar molecules. Phys. Rev. Lett. 101, 243002 (2008).

    Google Scholar 

  6. Zeppenfeld, M., Motsch, M., Pinkse, P. W. H.& Rempe, G. Optoelectrical cooling of polar molecules. Phys. Rev. A 80, 041401 (2009).

    Google Scholar 

  7. O’Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697 (2010).

    Google Scholar 

  8. Gröblacher, S., Hammerer, K., Vanner, M. R.& Aspelmeyer, M. Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature 460, 724 (2009).

    Google Scholar 

  9. Schliesser, A., Arcizet, O., Rivière, R., Anetsberger, G.& Kippenberg, T. J. Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit. Nature Phys. 5, 509 (2009).

    Google Scholar 

  10. Kippenberg, T. J.& Vahala, K. J. Cavity opto-mechanics. Opt. Express 15, 17172 (2007).

    Google Scholar 

  11. Teufel, J. D., Donner, T., Li, D., Harlow, J. W., Allman, M. S., Cicak, K., Sirois, A. J., Whittaker, J. D., Lehnert, K. W.& Simmonds, R. W. Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359 (2011).

    Google Scholar 

  12. Chan, J., Alegre, T. P. M., Safavi-Naeini, A. H., Hill, J. T., Krause, A., Gröblacher, S., Aspelmeyer, M.& Painter, O. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89 (2011).

    Google Scholar 

  13. Ashkin, A. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156 (1970).

    Google Scholar 

  14. Chu, S., Hollberg, L., Bjorkholm, J. E., Cable, A.& Ashkin, A. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure. Phys. Rev. Lett. 55, 48 (1985).

    Google Scholar 

  15. Lett, P. D., Watts, R. N., Westbrook, C. I., Phillips, W. D., Gould, P. L.& Metcalf, H. J. Observation of atoms laser cooled below the Doppler limit. Phys. Rev. Lett. 61, 169 (1988).

    Google Scholar 

  16. Dalibard, J.& Cohen-Tannoudji, C. Laser cooling below the Doppler limit by polarization gradients: simple theoretical models. J. Opt. Soc. Am. B 6, 2023 (1989).

    Google Scholar 

  17. Ungar, P. J., Weiss, D. S., Riis, E.& Chu, S. Optical molasses and multilevel atoms: theory. J. Opt. Soc. Am. B 6, 2058 (1989).

    Google Scholar 

  18. Lu, Z. T., Corwin, K. L., Renn, M. J., Anderson, M. H., Cornell, E. A.& Wieman, C. E. Low-velocity intense source of atoms from a magneto-optical trap. Phys. Rev. Lett. 77, 3331–3334 (1996).

    Google Scholar 

  19. Chang, D. E., Regal, C. A., Papp, S. B., Wilson, D. J., Ye, J., Painter, O., Kimble, H. J.& Zoller, P. Cavity opto-mechanics using an optically levitated nanosphere. Proc. Natl. Acad. Sci. 107, 1005 (2009).

    Google Scholar 

  20. Li, T., Kheifets, S.& Raizen, M. G. Millikelvin cooling of an optically trapped microsphere in vacuum. Nature Phys. 7, 527 (2011).

    Google Scholar 

  21. Horak, P., Hechenblaikner, G., Gheri, K. M., Stecher, H.& Ritsch, H. Cavity-induced atom cooling in the strong coupling regime. Phys. Rev. Lett. 79, 4974 (1997).

    Google Scholar 

  22. Leibrandt, D. R., Labaziewicz, J., Vuletić, V.& Chuang, I. L. Cavity sideband cooling of a single trapped ion. Phys. Rev. Lett. 103, 103001 (2009).

    Google Scholar 

  23. Koch, M., Sames, C., Kubanek, A., Apel, M., Balbach, M., Ourjoumtsev, A., Pinkse, P. W. H.& Rempe, G. Feedback cooling of a single neutral atom. Phys. Rev. Lett. 105, 173003 (2010).

    Google Scholar 

  24. Lewenstein, M.& Roso, L. Cooling of atoms in colored vacua. Phys. Rev. A 47, 3385 (1993).

    Google Scholar 

  25. Braginsky, V. B.& Manukin, A. B. Ponderomotive effects of electromagnetic radiation. Sov. Phys. JETP 25, 653 (1967).

    Google Scholar 

  26. Cohadon, P. F., Heidmann, A.& Pinard, M. Cooling of a mirror by radiation pressure. Phys. Rev. Lett. 83, 3174 (1999).

    Google Scholar 

  27. Arcizet, O., Cohadon, P. F., Briant, T., Pinard, M.& Heidmann, A. Radiation-pressure cooling and optomechanical instability of a micromirror. Nature 444, 71 (2006).

    Google Scholar 

  28. Gröblacher, S., Hertzberg, J. B., Vanner, M. R., Cole, G. D., Gigan, S., Schwab, K. C.& Aspelmeyer, M. Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity. Nature Phys. 5, 485 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Xuereb .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Xuereb, A. (2012). Introduction. In: Optical Cooling Using the Dipole Force. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29715-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29715-1_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29714-4

  • Online ISBN: 978-3-642-29715-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics