Compositional Methods in Characterization of Timed Event Structures

  • Elena Bozhenkova
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7162)


A logic characteristic formulas up to the timed testing preorders are constructed for model of timed event structures with discrete internal actions. Such logic formulas can be used for deciding a problem of recognizing timed testing relations. Timed event structures can be considered as a composition of their parts. And to simplify construction of characteristic formula we can try to use characteristic formulas of parts. In the paper we use compositional methods for construction of the characteristic formulas in a model of timed event structures with discrete internal actions.


Timed event structures testing relations logical characterization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aceto, L., De Nicola, R., Fantechi, A.: Testing Equivalences for Event Structures. In: Venturini Zilli, M. (ed.) Mathematical Models for the Semantics of Parallelism. LNCS, vol. 280, pp. 1–20. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Courcoubetis, C., Dill, D.: Model checking in dense real time. Inform. and Comput. 104, 2–34 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Andreeva, M.V., Bozhenkova, E.N., Virbitskaite, I.B.: Analysis of timed concurrent models based on testing equivalence. Fundamenta Informaticae 43, 1–20 (2000)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bihler, E., Vogler, W.: Timed Petri Nets: Efficiency of Asynchronous Systems. In: Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 25–58. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Bozhenkova, E.N.: Testing equivalences for reak-time event structures. Journal of Computational Technologies 15(3), 52–68 (2010) (in Russian)zbMATHGoogle Scholar
  6. 6.
    Castellani, I., Hennessy, M.: Testing Theories for Asynchronous Languages. In: Arvind, V., Sarukkai, S. (eds.) FST TCS 1998. LNCS, vol. 1530, pp. 90–102. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Cleaveland, R., Hennessy, M.: Testing Equivalence as a Bisimulation Equivalence. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 11–23. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  8. 8.
    Cleaveland, R., Zwarico, A.E.: A theory of testing for real-time. In: Proc. 6th IEEE Symp. on Logic in Comput. Sci., LICS 1991, Amsterdam, The Netherlands, pp. 110–119 (1991)Google Scholar
  9. 9.
    De Nicola, R., Hennessy, M.: Testing equivalence for processes. Theoretical Comput. Sci. 34, 83–133 (1984)zbMATHCrossRefGoogle Scholar
  10. 10.
    Goltz, U., Wehrheim, H.: Causal Testing. In: Penczek, W., Szałas, A. (eds.) MFCS 1996. LNCS, vol. 1113, pp. 394–406. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  11. 11.
    Hennessy, M., Regan, T.: A process algebra for timed systems. Inform. and Comput. 117, 221–239 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Laroussinie, F., Larsen, K.L., Weise, C.: From timed automata to logic — and back. — Århus (1995) (Tech. Rep. / BRICS, Dept. Comput. Sci., Univ. of Århus; N RS-95-2)Google Scholar
  13. 13.
    Nielsen, B., Skou, A.: Automated Test Generation from Timed Automata. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 343–357. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Elena Bozhenkova
    • 1
  1. 1.A.P. Ershov Institute of Informatics SystemsSB RASNovosibirskRussia

Personalised recommendations