Advertisement

Static Analysis of Run-Time Modes in Synchronous Process Network

  • Michael Beyer
  • Sabine Glesner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7162)

Abstract

For modeling modern streaming-oriented applications, Process Networks (PNs) are used to describe systems with changing behavior, which must be mapped on a concurrent architecture to meet the performance and energy constraints of embedded devices. Finding an optimal mapping of Process Networks to the constrained architecture presumes that the behavior of the Process Network is statically known. In this paper we present a static analysis for synchronous PNs that extracts different run-time modes by using polyhedral abstraction. The result is a Mealy machine whose states describe different run-time modes and the edges among them represent transitions. This machine can be used to guide optimizing backend mappings from PNs to concurrent architectures.

Keywords

static analysis program modes synchronous process networks optimization polyhedral abstraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: Toward a complete set of numerical abstractions for the analysis and verification of hardware and software systems. Science of Computer Programming 72(1-2), 3–21 (2008)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a program. In: POPL 1978: Proceedings of the 5th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, pp. 84–96. ACM, New York (1978)CrossRefGoogle Scholar
  3. 3.
    Geilen, M., Basten, T.: Reactive process networks. In: Proceedings of the 4th ACM International Conference on Embedded Software, pp. 137–146. ACM, New York (2004)CrossRefGoogle Scholar
  4. 4.
    Gheorghita, S.V., Palkovic, M., Hamers, J., Vandecappelle, A., Mamagkakis, S., Basten, T., Eeckhout, L., Corporaal, H., Catthoor, F., Vandeputte, F., Bosschere, K.D.: System-scenario-based design of dynamic embedded systems. ACM Transactions on Design Automation of Electronic Systems 14(1), 1–45 (2009)CrossRefGoogle Scholar
  5. 5.
    Girault, A., Lee, B., Lee, E.: Hierarchical finite state machines with multiple concurrency models. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 18(6), 742–760 (1999)CrossRefGoogle Scholar
  6. 6.
    Halbwachs, N., Proy, Y.-E., Roumanoff, P.: Verification of real-time systems using linear relation analysis. Formal Methods in System Design 11(2), 157–185 (1997)CrossRefGoogle Scholar
  7. 7.
    IEEE Standard Association. IEEE Std. 1666-2005, Open SystemC language reference manual (2006), www.systemc.org
  8. 8.
    Kahn, G.: The semantics of simple language for parallel programming. In: IFIP Congress, pp. 471–475. North Holland Publishing Company, Stockholm (1974)Google Scholar
  9. 9.
    de Kock, E.A., Essink, G., Smits, W.J.M., van der Wolf, R., Brunei, J.-Y., Kruijtzer, W.M., Lieverse, P., Vissers, K.A.: YAPI: Application modeling for signal processing systems. In: 37th Design Automation Conference, Los Angeles, CA, pp. 402–405 (June 2000)Google Scholar
  10. 10.
    Theelen, B.D., Geilen, M., Basten, T., Voeten, J.P.M., Gheorghita, S.V., Stuijk, S.: A scenario-aware data flow model for combined long-run average and worst-case performance analysis. In: MEMOCODE 2006: Proceedings of the Fourth ACM and IEEE International Conference on Formal Methods and Models for Co-Design, Napa Valley, California, pp. 185–194 (July 2006)Google Scholar
  11. 11.
    Thiele, L., Stehl, K., Ziegenbein, D., Ernst, R., Teich, J.: Funstate - An internal design representation for codesign. In: ICCAD 1999: Proceedings of the 1999 IEEE/ACM International Conference on Computer-aided Design, pp. 558–565. IEEE Press, Piscataway (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Michael Beyer
    • 1
  • Sabine Glesner
    • 1
  1. 1.Chair Software Engineering for Embedded Systems GroupTechnische Universität BerlinBerlinGermany

Personalised recommendations