A Petri net is distributed if, given an allocation of transitions to (geographical) locations, no two transitions at different locations share a common input place. A system is distributable if there is some distributed Petri net implementing it.

This paper addresses the question of which systems can be distributed, while respecting a given allocation. The paper states the problem formally and discusses several examples illuminating – to the best of the authors’ knowledge – the current status of this work.


Transition System Output Transition Reachability Graph Input Place Direct Realisation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Badouel, É., Caillaud, B., Darondeau, P.: Distributing Finite Automata through Petri Net Synthesis. Journal on Formal Aspects of Computing 13, 447–470 (2002)zbMATHCrossRefGoogle Scholar
  2. 2.
    Badouel, É., Darondeau, P.: Theory of Regions. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 529–586. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Best, E., Darondeau, P.: Separability in Persistent Petri Nets. In: Lilius, J., Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 246–266. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Best, E., Hopkins, R.P.: B(PN)2 - a Basic Petri Net Programming Notation. In: Reeve, M., Bode, A., Wolf, G. (eds.) PARLE 1993. LNCS, vol. 694, pp. 379–390. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  5. 5.
  6. 6.
    Carmona, J.: The label splitting problem. In: Desel, J., Yakovlev, A. (eds.) Proc. Applications of Region Theory 2011. CEUR Workshop Proceedings, vol. 725, pp. 22–35 (2011)Google Scholar
  7. 7.
    Commoner, F., Holt, A.W., Even, S., Pnueli, A.: Marked Directed Graphs. J. Comput. Syst. Sci. 5(5), 511–523 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Costa, A., Gomes, L.: Petri Net Partitioning Using Net Splitting Operation. In: 7th IEEE Int. Conf. on Industrial Informatics (INDIN), pp. 204–209 (2009)Google Scholar
  9. 9.
    Genrich, H.J., Lautenbach, K.: Synchronisationsgraphen. Acta Inf. 2, 143–161 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    van Glabbeek, R.J.: The Linear Time – Branching Time Spectrum II. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  11. 11.
    Hoare, C.A.R.: Communicating Sequential Processes. Communications of the ACM 21(8) (1978)Google Scholar
  12. 12.
    Hopkins, R.P.: Distributable Nets. Applications and Theory of Petri Nets 1990. In: Rozenberg, G. (ed.) APN 1991. LNCS, vol. 524, pp. 161–187. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  13. 13.
    Lamport, L.: Arbiter-Free Synchronization. Distributed Computing 16(2/3), 219–237 (2003)CrossRefGoogle Scholar
  14. 14.
    Lauer, P.E., Torrigiani, P.R., Shields, M.W.: COSY – a System Specification Language Based on Paths and Processes. Acta Informatica 12, 109–158 (1979)zbMATHCrossRefGoogle Scholar
  15. 15.
    Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92, p. 171. Springer, Heidelberg (1980)CrossRefGoogle Scholar
  16. 16.
    Reisig, W.: Petri Nets. EATCS Monographs on Theoretical Computer Science, vol. 4. Springer, Heidelberg (1985)zbMATHGoogle Scholar
  17. 17.
    Schicke, J.-W., Peters, K., Goltz, U.: Synchrony vs. Causality in Asynchronous Petri Nets. In: Luttik, B., Valencia, F.D. (eds.) Proc. 18th Intl. Workshop on Expressiveness in Concurrency (EXPRESS 2011). EPTCS, vol. 64, pp. 119–131 (2011), doi:10.4204/EPTCS.64.9Google Scholar
  18. 18.
    Teruel, E., Chrząstowski-Wachtel, P., Colom, J.M., Silva, M.: On Weighted T-systems. In: Jensen, K. (ed.) ICATPN 1992. LNCS, vol. 616, pp. 348–367. Springer, Heidelberg (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Eike Best
    • 1
  • Philippe Darondeau
    • 2
  1. 1.Parallel Systems, Department of Computing ScienceCarl von Ossietzky Universität OldenburgOldenburgGermany
  2. 2.INRIA, Centre Rennes - Bretagne AtlantiqueRennes CedexFrance

Personalised recommendations