Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7285))

Abstract

The bin packing problem is to find the minimum number of bins of size one to pack a list of items with sizes a 1,…, a n in (0,1]. Using uniform sampling, which selects a random element from the input list each time, we develop a randomized \(O({n(\log\log n)\over \sum_{i=1}^n a_i}+({1\over \epsilon})^{O({1\over\epsilon})})\) time (1 + ε)-approximation scheme for the bin packing problem. We show that every randomized algorithm with uniform random sampling needs \(\Omega({n\over \sum_{i=1}^n a_i})\) time to give an (1 + ε)-approximation. For each function s(n): N → N, define ∑ (s(n)) to be the set of all bin packing problems with the sum of item sizes equal to s(n). We show that ∑ (n b) is NP-hard for every b ∈ (0,1]. This implies a dense sublinear time hierarchy of approximation schemes for a class of NP-hard problems, which are derived from the bin packing problem. We also show a randomized streaming approximation scheme for the bin packing problem such that it needs only constant updating time and constant space, and outputs an (1 + ε)-approximation in \(({1\over \epsilon})^{O({1\over\epsilon})}\) time. Let S(δ)-bin packing be the class of bin packing problems with each input item of size at least δ. This research also gives a natural example of NP-hard problem (S(δ)-bin packing) that has a constant time approximation scheme, and a constant time and space sliding window streaming approximation scheme, where δ is a positive constant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the frequency moments. In: Proceedings of the Symposium on Theory of Computing, pp. 20–29 (1996)

    Google Scholar 

  2. Applegate, D., Buriol, L., Dillard, B., Johnson, D., Shore, P.: The cutting-stock approach to bin packing: Theory and experiments. In: Proceedings of Algorithm Engineering and Experimentation (ALENEX), pp. 1–15 (2003)

    Google Scholar 

  3. Batu, T., Berenbrink, P., Sohler, C.: A sublinear-time approximation scheme for bin packing. Theoretical Computer Science 410, 5082–5092 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brown, D.: A lower bound for on-line one-dimensional bin packing problem. Technical Report 864, University of Illinois, Urbana, IL (1979)

    Google Scholar 

  5. Chazelle, B., Liu, D., Magen, A.: Sublinear geometric algorithms. SIAM Journal on Computing 35, 627–646 (2005)

    Article  MathSciNet  Google Scholar 

  6. Chazelle, B., Rubfinfeld, R., Trevisan, L.: Approximating the minimum spanning tree weight in sublinear time. SIAM Journal on Computing 34, 1370–1379 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Csirik, J.A., Johnson, D.S., Kenyon, C., Shor, P.W., Weber, R.R.: A Self Organizing Bin Packing Heuristic. In: Goodrich, M.T., McGeoch, C.C. (eds.) ALENEX 1999. LNCS, vol. 1619, pp. 246–265. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  8. Csirik, J., Johnson, D., Kenyon, C., Orlin, J., Shore, P., Weber, R.: On the sum-of-squares algorithm for bin-packing. In: Proceedings of the 22nd Annual ACM Symposium on Theory of Computing (STOC), pp. 208–217 (2000)

    Google Scholar 

  9. Czumaj, A., Ergun, F., Fortnow, L., Magen, I.N.A., Rubinfeld, R., Sohler, C.: Sublinear approximation of euclidean minimum spanning tree. SIAM Journal on Computing 35, 91–109 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Czumaj, A., Sohler, C.: Estimating the weight of metric minimum spanning trees in sublinear-time. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing, pp. 175–183 (2004)

    Google Scholar 

  11. Fernandez de la Vega, W., Lueker, G.S.: Bin packing can be solved within 1+epsilon in linear time. Combinatorica 1(4), 349–355 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  12. Flajolet, P., Martin, G.: Probabilistic counting algorithms for data base application. Journal of Computer and System Sciences 31, 182–209 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fu, B., Chen, Z.: Sublinear-time algorithms for width-bounded geometric separators and their applications to protein side-chain packing problems. Journal of Combinatorial Optimization 15, 387–407 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Garey, M.R., Johnson, D.S.: Computers and Intractability. W. H. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  15. Gilmore, M., Gomory, R.: A linear programming approach to the cutting-stock problem - part ii. Operations Research

    Google Scholar 

  16. Gilmore, M., Johnson, D.: A linear programming approach to the cutting-stock problem. Operations Research

    Google Scholar 

  17. Goldreich, O., Ron, D.: On testing expansion in bounded-degree graphs. Technical Report 00-20, Electronic Colloquium on Computational Complexity (2000), http://www.eccc.uni-trier.de/eccc/

  18. Li, M., Ma, B., Wang, L.: On the closest string and substring problems. Journal of the ACM 49(2), 157–171 (2002)

    Article  MathSciNet  Google Scholar 

  19. Liang, F.: A lower bound for on-line bin packing. Information Processing Letters 10, 76–79 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  20. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press (2000)

    Google Scholar 

  21. Munro, J.I., Paterson, M.S.: Selection and sorting with limited storage. Theoretical Computer Science 12, 315–323 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  22. Goldreich, S.G.O., Ron, D.: Property testing and its connection to learning and approximation. J. ACM 45, 653–750 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beigel, R., Fu, B. (2012). A Dense Hierarchy of Sublinear Time Approximation Schemes for Bin Packing. In: Snoeyink, J., Lu, P., Su, K., Wang, L. (eds) Frontiers in Algorithmics and Algorithmic Aspects in Information and Management. Lecture Notes in Computer Science, vol 7285. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29700-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29700-7_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29699-4

  • Online ISBN: 978-3-642-29700-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics