Metaheuristic Approaches for the Winner Determination Problem in Combinatorial Auction

  • Dalila BoughaciEmail author
Part of the Studies in Computational Intelligence book series (SCI, volume 427)


Many problems in combinatorial optimization are NP-Hard. This has forced researchers to explore meta-heuristic techniques for dealing with this class of complex problems and finding an acceptable solution in reasonable time.

In this chapter, we are interested in the winner determination problem (WDP) in combinatorial auction (CA). CA is an auction that allocates a set of many goods to bidders in the presence of substitutes and complements. The winner determination problem is a complex problem. It is the problem of finding winning bids that maximize the auctioneers revenue under the constraint that each good can be allocated to at most one bidder.

This chapter presents a computational experience regarding four well-known meta-heuristics (stochastic local search, tabu search, genetic algorithms andmemetic algorithms) for solving the winner determination problem (WDP). The purpose of this study is to evaluatethe performance of each one of the different techniques to solve the WDP in combinatorial auctions. The different methods are evaluated on various benchmark problems, and compared with the hybrid simulated annealing (SAGII) and Casanova. The computational experiments show that in general the metaheuristic approaches provide competitive results and find good quality solutions.


Genetic Algorithm Tabu Search Memetic Algorithm Combinatorial Auction Stochastic Local Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, A., Tenhunen, M., Ygge, F.: Integer programming for combinatorial auction winner determination. In: Proceedings of 4th International Conference on Multi-Agent Systems, pp. 39–46. IEEE Computer Society Press (July 2000)Google Scholar
  2. 2.
    Bean, J.C.: Genetics and random keys for sequencing and optimization. ORSA Journal of Computing 6(2), 154–160 (1994)zbMATHCrossRefGoogle Scholar
  3. 3.
    Boughaci, D., Benhamou, B., Drias, H.: Local Search Methods for the Optimal Winner Determination Problem in Combinatorial Auctions. J. Math. Model. Algorithms 9(2), 165–180 (2010)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Boughaci, D., Benhamou, B., Drias, H.: A memetic algorithm for the optimal winner determination problem. Soft Computing 13(8-9), 905–917 (2009)CrossRefGoogle Scholar
  5. 5.
    Boughaci, D., Benhamou, B., Drias, H.: Stochastic Local Search for the Optimal Winner Determination Problem in Combinatorial Auctions. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 593–597. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Boughaci, D., Drias, H., Benhamou, B.: Solving MAX-SAT problems using a Memetic Evolutionary Meta-Heuristic. In: Proceedings of the IEEE International conference on Cybernetics and Intelligent Systems, CIS 2004, pp. 480–484 (December 2004)Google Scholar
  7. 7.
    Collins, J., Sundareswara, R., Gini, M., Mobasher, B.: Bid Selection Strategies for Multi-Agent Contracting in the Presence of Scheduling Constraints. In: Moukas, A., Ygge, F., Sierra, C. (eds.) Agent Mediated Electronic Commerce II. LNCS, vol. 1788, pp. 113–130. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Fujishima, Y., Leyton-Brown, K., Shoham, Y.: Taming the computational complexity of combinatorial auctions: optimal and approximate approaches. In: Sixteenth International Joint Conference on Artificial Intelligence, pp. 48–53 (1999)Google Scholar
  9. 9.
    Goldberg, D.E.: Genetic Algorithms in search Optimization and Machine Learning. Addison-Wesley, Wokingham (1989)Google Scholar
  10. 10.
    Glover, F.: Future paths for integer programming and links to Artificial intelligence. Operational Search 31 (1986)Google Scholar
  11. 11.
    Glover, F.: “Tabu search”: Part I. ORSA, Journal on Computing (1989)Google Scholar
  12. 12.
    Guo, Y., Lim, A., Rodrigues, B., Zhu, Y.: Heuristics for a brokering set packing problem. In: Proceedings of Eighth International Symposium on Artificial Intelligence and Mathematics, pp. 10–14 (2004)Google Scholar
  13. 13.
    Guo, Y., Lim, A., Rodrigues, B., Zhu, Y.: Heuristics for a bidding problem. Computers and Operations Research 33(8), 2179–2188 (2006)zbMATHCrossRefGoogle Scholar
  14. 14.
    Holland, A., O’sullivan, B.: Towards Fast Vickrey Pricing using Constraint Programming. Artificial Intelligence Review 21(3-4), 335–352 (2004)zbMATHCrossRefGoogle Scholar
  15. 15.
    Hoos, H.H., Boutilier, C.: Solving combinatorial auctions using stochastic local search. In: Proceedings of the 17th National Conference on Artificial Intelligence, pp. 22–29 (2000)Google Scholar
  16. 16.
    Lau, H.C., Goh, Y.G.: An intelligent brokering system to support multi-agent web-based 4th-party logistics. In: Proceedings of the 14th International Conference on Tools with Artificial Intelligence, pp. 54–61 (2002)Google Scholar
  17. 17.
    Ishibuchi, H., Narukawa, K.: Some issues on the implementation of local search in evolutionary multiobjective optimization. In: Deb, K., et al. (eds.) GECCO 2004, Part I. LNCS, vol. 3102, pp. 1246–1258. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Ishibuchi, H., Yoshida, T., Murata, T.: Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE Transactions on Evolutionary Computation 7(2), 204–223 (2003)CrossRefGoogle Scholar
  19. 19.
    Leyton-Brown, K., Pearson, M., Shoham, Y.: Towards a universal test suite for combinatorial auction algorithms. In: ACM Conference on Electronic Commerce, pp. 66–76 (2000)Google Scholar
  20. 20.
    Leyton-Brown, K., Tennenholtz, M., Shoham, Y.: An Algorithm for Multi-Unit Combinatorial Auctions. In: Proceedings of the 17th National Conference on Artificial Intelligence, Austin, Games 2000, Bilbao and ISMP 2000, Atlanta (2000)Google Scholar
  21. 21.
    McAfee, R., McMillan, P.J.: Auctions and bidding. Journal of Economic Literature 25, 699–738 (1987)Google Scholar
  22. 22.
    Moscato, P.: On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards Memetic Algorithms. In: Caltech Concurrent Computation Program, C3P Report 826 (1989)Google Scholar
  23. 23.
    Nisan, N.: Bidding and allocation in combinatorial auctions. In: Proceedings of ACM Conference on Electronic Commerce (EC 2000), pp. 1–12. ACM SIGecom, ACM Press, Minneapolis (2000)CrossRefGoogle Scholar
  24. 24.
    Rothkopf, M.H., Pekee, A., Ronald, M.: Computationally manageable combinatorial auctions. Management Science 44(8), 1131–1147 (1998)zbMATHCrossRefGoogle Scholar
  25. 25.
    Sandholm, T.: Algorithms for Optimal Winner Determination in Combinatorial Auctions. Artificial Intelligence 135(1-2), 1–54 (1999)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Sandholm, T., Suri, S., Gilpin, A., Levine, D.: CABoB: a fast optimal algorithm for combinatorial auctions. In: Proceedings of the International Joint Conferences on Artificial Intelligence, pp. 1102–1108 (2001)Google Scholar
  27. 27.
    Sandholm, T., Suri, S.: Improved Optimal Algorithm for Combinatorial Auctions and Generalizations. In: Proceedings of the 17th National Conference on Artificial Intelligence, pp. 90–97 (2000)Google Scholar
  28. 28.
    Sandholm, T.: Optimal Winner Determination Algorithms. In: Cramton, P., et al. (eds.) Combinatorial Auctions. MIT Press (2006)Google Scholar
  29. 29.
    de Vries, S., Vohra, R.: Combinatorial auctions a survey. INFORMS Journal of Computing 15, 284–309 (2003)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.USTHBAlgiersAlgeria

Personalised recommendations