On Some Aspects of Nature-Based Algorithms to Solve Multi-Objective Problems
Chapter
- 3 Citations
- 3.6k Downloads
Abstract
This chapter presents an overview of various nature-based algorithms to solve multi-objective problems with the particular emphasis on Multi-Objective Evolutionary Algorithms based on Genetic Algorithm. Some of the significant hybridization and the modification of the benchmark algorithms have also been discussed as well. The complexity issues have been outlined and various test problems to show the effectiveness of such algorithms have also been summarized. At the end, a brief discussion on the software packages used to model these type of algorithms are presented.
Keywords
Nature based algorithms Multi-Objective Evolutionary Algorithm Hybrid algorithm Complexity Test ProblemPreview
Unable to display preview. Download preview PDF.
References
- 1.Pareto, V.: Cours d’e_conomie politique professe_ a_ l’universite_de Lausanne, vol. 1, 2. F. Rouge, Laussanne (1896) Google Scholar
- 2.Hung, S.-J.: Activity-based divergent supply chain planning for competitive advantage in the risky global environment: A DEMATEL-ANP fuzzy goal programming approach. Expert Systems with Applications 38(8), 9053–9062 (2011)CrossRefGoogle Scholar
- 3.Mirakhorli, A.: Multi-objective optimization of reverse logistics network with fuzzy demand and return-product using an interactive fuzzy goal programming approach. In: 40th International Conference on Computers and Industrial Engineering: Soft Computing Techniques for Advanced Manufacturing and Service Systems, Awaji Island, Japan (2010)Google Scholar
- 4.Wu, C., Barnes, D., Rosenberg, D., Luo, X.: An analytic network process-mixed integer multi-objective programming model for partner selection in agile supply chains. Production Planning & Control 20(3), 254–275 (2009)CrossRefGoogle Scholar
- 5.Susmita, B., Bhattacharya, R.: Applying modified NSGA-II for bi-objective supply chain problem. Journal of Intelligent Mamnufacturing (2012), doi: 10.1007/s10845-011-0617-2Google Scholar
- 6.Eric, B., Marco, D., Guy, T.: Swarm Intelligence From Natural to Artificial Systems. Oxford University Press, New York (1999)zbMATHGoogle Scholar
- 7.Faro, J., Combadao, J., Gordo, I.: Did Germinal Centers Evolve Under Differential Effects of Diversity vs Affinity? In: Bersini, H., Carneiro, J. (eds.) ICARIS 2006. LNCS, vol. 4163, pp. 1–8. Springer, Heidelberg (2006)CrossRefGoogle Scholar
- 8.Coello Coello, C.A., Lamont, G.B., van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Springer, Berlin (2007)zbMATHGoogle Scholar
- 9.Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor (1975)Google Scholar
- 10.Goldberg David, E.: Genetic Algorithms in Search, Optimization & Machine Learning, Fifth Indian Reprint. Pearson Education, Delhi (1989)Google Scholar
- 11.Srinivas, N., Deb, K.: Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evolutionary Computations 2(3), 221–248 (1994)CrossRefGoogle Scholar
- 12.Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computing 6(2), 182–197 (2002)CrossRefGoogle Scholar
- 13.Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)CrossRefGoogle Scholar
- 14.Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. In: Giannakoglou, K., Tsahalis, D., Periaux, J., Papailou, P., Fogarty, T. (eds.) EUROGEN 2001. Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, Athens, Greece, pp. 95–100 (2001)Google Scholar
- 15.Knowles Joshua, D., Corne David, W.: Approximating the Nondominated Front Using teh Pareto Archived Evolution Strategy. Evolutionary Computation 8(2), 149–172 (2000)CrossRefGoogle Scholar
- 16.Horn, J., Nafpliotis, N., Goldberg, D.E.: A Niched Pareto Genetic Algorithm for Multiobjective Optimization. In: Proceeding of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computatyional Intelligence, vol. 1, pp. 82–87. IEEE Service Center, Piscataway (1994)Google Scholar
- 17.Erickson, M., Mayer, A., Horn, J.: The Niched Pareto Genetic Algorithm 2 Applied to the Design of Groundwater Remediation Systems. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 681–695. Springer, Heidelberg (2001)CrossRefGoogle Scholar
- 18.Corne, D.W., Knowles, J.D., Oates, M.J.: The Pareto Envelope-based Selection Algorithm for Multiobjective Optimization. In: Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.-P. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 839–848. Springer, Heidelberg (2000)CrossRefGoogle Scholar
- 19.Corne, D.W., Jerram, N.R., Knowles, J.D., Oates, M.J.: PESA-II: Regionbased Selection in Evolutionary Multiobjective Optimization. In: Spector, L., Goosman, E.D., Wu, A., Langdon, W., Voigt, H.M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001), pp. 283–290. Morgan Kaufmann Publishers, San Francisco (2001)Google Scholar
- 20.Veldhuizen, D.A., van Lamont, G.B.: Multiobjective Optimization with Messy Genetic Algorithms. In: Proceedings of the 2000 ACM Symposium on Applied Computing. ACM, Villa Olmo (2000)Google Scholar
- 21.Deb, K.: Binary and Floating-Point Function Optimization using Messy Genetic Algorithms. PhD Thesis, University of Alabama, Tuscaloosa, Alabama (1991)Google Scholar
- 22.Coello Coello, C.A., Toscano Pulido, G.: A Micro-Genetic Algorithm for Multiobjective Optimization. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 126–140. Springer, Heidelberg (2001)CrossRefGoogle Scholar
- 23.Schaffer, J.D.: Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. In: Genetic Algorithms and their Applications: Proceedings of the First International Conference on Genetic Algorithms, pp. 93–100. Lawrence Erlbaum, Hillsdale (1985)Google Scholar
- 24.Hajela, P., Lin, C.Y.: Genetic search strategies in multicriterion optimal design. Structural Optimization 4, 99–107 (1992)CrossRefGoogle Scholar
- 25.Lu, H., Yen, G.G.: Rank-density-based multiobjective genetic algorithm and benchmark test function study. IEEE Transactions on Evolutionary Computation 7(4), 325–343 (2003)CrossRefGoogle Scholar
- 26.Fourman Michael, P.: Compaction of Symbolic Layout using Genetic Algorithms. In: Grefenstette, J.J. (ed.) Genetic Algorithms and their Applications: Proceedings of the First International Conference on Genetic Algorithms, pp. 141–153. Lawrence Erlbaum, Hillsdale, Hillsdale (1985)Google Scholar
- 27.Eberhart, R.C., Kenndy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth Symposium on Micro Machine and Human Science, pp. 39–43. IEEE Service Center, Piscataway (1995)CrossRefGoogle Scholar
- 28.Eberhart, R.C., Shi, Y.: Comparison between genetic algorithms and particle swarm optimization. In: Porto, V.W., et al. (eds.) Evolutionaey Programming, vol. VII, pp. 611–616. Springer (1998)Google Scholar
- 29.Durillo, J.J., Nebro, A.J., García-Nieto, J., Alba, E.: On the Velocity Update in Multi-Objective Particle Swarm Optimizers. In: Coello Coello, C.A., Dhaenens, C., Jourdan, L. (eds.) Advances in Multi-Objective Nature Inspired Computing. SCI, vol. 272, pp. 45–62. Springer, Heidelberg (2010)CrossRefGoogle Scholar
- 30.Reyes-Sierra, M., Coello Coello, C.A.: Improving PSO-Based Multi-objective Optimization Using Crowding, Mutation and ε-Dominance. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 505–519. Springer, Heidelberg (2005)CrossRefGoogle Scholar
- 31.Durillo, J.J., García-Nieto, J., Nebro, A.J., Coello Coello, C.A., Luna, F., Alba, E.: Multi-Objective Particle Swarm Optimizers: An Experimental Comparison. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp. 495–509. Springer, Heidelberg (2009)CrossRefGoogle Scholar
- 32.Ratnaweera, A., Halgamuge, S., Watson, H.: Self-organizing hierarchical particle swarm optimizer with time-varying accelration coefficients. International Journal of Computational Intelligence Research 8(3), 240–255 (2004)Google Scholar
- 33.Storn, R., Price, K.V.: Differential evolution-A simple and efficient adaptive scheme for global optimization over continuous spaces, Technical Report, ICSI, University of California, Berkeley (1995)Google Scholar
- 34.Chang, C.S., Xu, D., Quek, H.: Pareto-optimal set based multiobjective tuning of fuzzy automatic train operation for mas transit system. IEE Proceedings on Electric Power Applications 146(5), 577–583 (1999)CrossRefGoogle Scholar
- 35.Saku, K., Jouni, L.: Generalized Differential Evolution for Constrained Multi-Objective Optimization. In: Thu, B.L., Sameer, A. (eds.) Multi-Objective Optimization in Computational Intelligence Theory and Practice, pp. 43–75. Information Science Reference, USA (2008)Google Scholar
- 36.Bergey, P.K.: An agent enhanced intelligent spreadsheet solver for multicriteria decision making. In: Proceedings of teh Fifth American Conference on Information Systems (AMCIS 1999), Milwaukee, WI, pp. 966–968 (1999)Google Scholar
- 37.Abbass, H.A.: The self-adaptive Pareto differential evolution algorithm. In: Proceedings of the 2002 Congress on Evolutionary Computation (CEC 2002), Honolulu, HI, pp. 831–836. IEEE Service Center (2002)Google Scholar
- 38.Madavan, N.K.: Multi-objective optimization usaing a Pareto differential evolution approach. In: Proceedings of the 2002 Congress on Evlutionary Computation (CEC 2002), Honolulu, HI, pp. 1145–1150. IEEE Service Center (2002)Google Scholar
- 39.Zaharie, D.: Multi-objective optimization with adaptive Pareto differential evolution. In: Proceedings of Symposium on Intelligent Systems and Applications (SIA 2003), Iasi, Romania (2003)Google Scholar
- 40.Xue, F., Sanderson, A.C., Graves, R.J.: Pareto-based multi-objective differential evolution. In: Proceedings of the 2003 Congress on Evolutionary Computation (CEC 2003), Canberra, Australia, pp. 862–869. IEEE Service Center (2003)Google Scholar
- 41.Parsopoulos, K.E., Tasoulis, D.K., Pavlidis, N.G., Plagianakos, V.P., Vrahatis, M.N.: Vector evaluated differential evolution for multiobjective optimization. In: Proceedings of the 2004 Congress on Evolutionary Computation (CEC 2004), Portland, OR, pp. 204–211. IEEE Service Center (2004)Google Scholar
- 42.Li, H., Zhang, Q.: A Multiobjective Differential Evolution Based on Decomposition for Multiobjective Optimization with Variable Linkages. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 583–592. Springer, Heidelberg (2006)CrossRefGoogle Scholar
- 43.Hernáandez-Diaz, A.G., Santana-Quintero, L.V., Coello Coello, C.A., Caballero, R., Molina, J.: A new proposal for multi-objective optimization using differenetial evolution and rough set theory. In: Proceeings of the Genetic and Evolutionary Computation Conference, GECCO 2006, Seattle, WA, pp. 675–682. ACM Press (2006)Google Scholar
- 44.Bersini, H., Varela, F.J.: A Variant of Evolution Strategies for Vector Optimization. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 193–197. Springer, Heidelberg (1991)CrossRefGoogle Scholar
- 45.Yoo, J., Hajela, P.: Immune network simulations in multicriterion design. Structural Optimization 18, 85–94 (1999)Google Scholar
- 46.Gambardella, L.M., Dorigo, M.: Ant-Q: A reinforcement learning approach to teh traveling salesman problem. In: Prieditis, A., Russell, S. (eds.) Proceedings of the 12th International Conference on Machine Learning, pp. 252–260. Morgan Kaufmann (1995)Google Scholar
- 47.Mariano, C.E., Morales, E.: MOAQ an Ant-Q algorithm for multiple objective optimization problems. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Genetic and Evolutionary Compouting Conference (GECCO 1999), vol. I, pp. 894–901. Morgan Kaufmann, San Francisco (1999)Google Scholar
- 48.Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated Annealing. Science 220(4598), 671–680 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
- 49.Serafini, P.: Simulated Annealing for Multiple Objective Optimization Problems. In: Tzeng, G., Wang, H., Wen, U., Yu, P. (eds.) Proceedings of the 10th International Conference on Multiple Criteria Decision Making: Expand and Enrich the Domains of Thinking and Application, vol. I, pp. 283–294. Springer, Berlin (1994)Google Scholar
- 50.Glover, F.: Future paths for integer programming and links to Artificial Intelligence. Computers and Opereations Research 13(5), 533–549 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
- 51.Gandibleux, X., Mezdaoui, N., Fréville: A Tabu Search Procedure to Solve Combinatorial Optimisation Porblems. In: Caballero, R., Ruiz, F., Steuer, R.E. (eds.) Advances in Multiple Objective and Goal Programming. LNEMS, vol. 455, pp. 291–300. Springer (1997)Google Scholar
- 52.Huang, J., Huang, X., Ma, Y., Lin, Y.: On a high-dimensional objective genetic algorithm and its nonlinear dynamic properties. Communications in Nonlinear Science and Numerical Simulation 16(9), 3825–3834 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
- 53.Kumar, R., Rockett, P.I.: Improved sampling of the Pareto-front in multiobjective genetic optimizations by steady-state evolution: a Pareto converging genetic algorithm. Evolutionary Computation 10(3), 283–314 (2002)CrossRefGoogle Scholar
- 54.Yang, X., Shi, Y.: A Real-coded Quantum Clone Multi-Objective Evolutionary Algorithm. In: 2011 International Conference on Consumer Electronics, Communications and Networks (CECNet 2011), XianNing, April 16-18, pp. 4683–4687 (2011)Google Scholar
- 55.Nie, L., Gao, L., Li, P., Wang, X.: Multi-Objective Optimization for Dynamic Single-Machine Scheduling. In: Tan, Y., Shi, Y., Chai, Y., Wang, G. (eds.) ICSI 2011, Part II. LNCS, vol. 6729, pp. 1–9. Springer, Heidelberg (2011)CrossRefGoogle Scholar
- 56.Pachón, V., Mata, J., Domínguez, J.L., Maña, M.J.: Multi-objective Evolutionary Approach for Subgroup Discovery. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds.) HAIS 2011, Part II. LNCS, vol. 6679, pp. 271–278. Springer, Heidelberg (2011)CrossRefGoogle Scholar
- 57.Nicola, B., Marco, L., Günter, R.: Convergence Rates of SMS-MOEA on Continuous Bi-Objective Problem Classes. In: FOGA 2011, Schwarzenberg, Austria, January 5-9 (2011)Google Scholar
- 58.James, B., Chris, A.: The cross-entropy method in multi-objective optimization: An asessment. European Journal of Operational Research 211(1), 112–121 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
- 59.Shin, K.S., Park, J.-O., Kim, Y.K.: Multi-Objective FMS process planning with variuous flexibilities using a symbiotic evolutionary algorithm. Computers and Operations Research 38(3), 702–712 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
- 60.Taher, N., Ehsan, A.F., Majid, N.: An efficient multi-objective modified shuffled frog leaping algorithm for distribution feeder configuration problem. European Transactions on Electrical Power 21(1), 721–739 (2010)Google Scholar
- 61.Li, Z.-Y., Chen, C., Ren, C.-A., Mohammed Esraa, M.: Novel Objective-Space Dividing Multi-Objectives Evolutionary Algorithm and its Convergence Property. In: 2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA), Changsha, September 23-26, pp. 372–379 (2010)Google Scholar
- 62.Zhang, G., Li, Y., Marian, G.: A Multi-Objective Membrane Algorithm for Knapsack Problems. In: 2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA), Changsha, September 23-26, pp. 604–609 (2010)Google Scholar
- 63.Mo, L., Dai, G., Zhu, J.: The RM-MEDA Based on Elitist Strategy. In: Cai, Z., Hu, C., Kang, Z., Liu, Y. (eds.) ISICA 2010. LNCS, vol. 6382, pp. 229–239. Springer, Heidelberg (2010)CrossRefGoogle Scholar
- 64.Li, H., Landa-Silva, D.: An Elitist GRASP Metaheuristic for the Multi-objective Quadratic Assignment Problem. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp. 481–494. Springer, Heidelberg (2009)CrossRefGoogle Scholar
- 65.Taher, N.: An efficient multi-objective HBMO algorithm for distribution feeder configuration. Expert Systems with Applications 38(3), 2878–2887 (2011)CrossRefGoogle Scholar
- 66.Tabatabaei, S.M., Vahidi, B., Hosseinian, S.H., Madani, S.M.: Bacterial Foraging-Based Solution for Optimal Capacitor Allocation in Distribution Systems. In: 2010 IEEE International Conference on Power and Energy (PECon 2010), Kuala Lumpur, Malaysia, November 29-December 1, pp. 253–258 (2010)Google Scholar
- 67.Reynolds, R.G.: An Introduction to Cultural Algorithms. In: Sebald, A.V., Fogel, L.J. (eds.) Proceedings of the Third Annual Conference on Evolutionary Programming, pp. 131–139. World Scientific, River Edge (1994)Google Scholar
- 68.Coello Coello, C.A., Landa, B.R.: Evolutionary Multiobjective Optimization using A Cultural Algorithm. In: 2003 IEEE Swarm Intelligence Symposium Proceedings, Indianapolis, Indiana, USA, pp. 6–13. IEEE Service Center (April 2003)Google Scholar
- 69.Yang, X.-S.: Firefly Algorithms for Multimodal Optimization. In: Watanabe, O., Zeugmann, T. (eds.) SAGA 2009. LNCS, vol. 5792, pp. 169–178. Springer, Heidelberg (2009)CrossRefGoogle Scholar
- 70.Yang, X.-S., Deb, S.: Cuckoo Search via Lévy Flights. In: Proceedings of World Congress on Nature and Biologically Inspired Computing (NaBIC 2009), India, pp. 210–214. IEEE, USA (2009)CrossRefGoogle Scholar
- 71.Esmat, R., Hossein, N.-P., Saeid, S.: GSA: A Gravitational Search Algorithm. Information Sciences 179(13), 2232–2248 (2009)zbMATHCrossRefGoogle Scholar
- 72.Hadi, N., Mahdi, N., Patrick, S.: Non-dominated Sorting Gravitational Search Algorithm. In: International Conference on Swarm Intelligence (ICSI 2011), Cergy, France, June 14-15, pp. 1–10 (2011)Google Scholar
- 73.Kaveh, A., Talatahari, S.: A novel heuristic optimization method: charged system search. Acta Mechanica 213(3-4), 267–289 (2010)zbMATHCrossRefGoogle Scholar
- 74.Shah-Hosseini: The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm. International Journal of Bio-Inspired Computation 1(1-2), 71–79 (2009)CrossRefGoogle Scholar
- 75.Pablo, R., Ismael, R., Fernando, R.: Using River Formation Dynamics to Design Heuristic Algorithms. Springer (2007) ISBN 978-3-540-73553-3Google Scholar
- 76.Vicsek, T., Czirok, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Physical Reviews Letters 75, 1226–1229 (1995)CrossRefGoogle Scholar
- 77.María, L.J., Raúl, R.J., Sebastián, V.: G3PARM: A Grammar Guided Genetic Programming Algorithm for Mining Association Rules. In: 2010 IEEE Congress on Evolutionary Computation (CEC), Barcelona, July 18-23, pp. 1–8 (2010)Google Scholar
- 78.Baños, R., Gil, C., Reca, J., Ortega, J.: A Pareto-based memetic algorithm for optimization of looped water distribution systems. Engineering Optimization 42(3), 223–240 (2010)CrossRefGoogle Scholar
- 79.Usman, F., Lam, C.P.: A Max-Min Multiobjective Technique to Optimize Model Based Test Suite. In: 2009 10th ACIS International Conference on Software Engineering, Artificial Intelligences, Networking and Parallel/Distributed Computing, Daegu, May 27-29, pp. 569–574 (2009)Google Scholar
- 80.Wang, X., Yu, S.-H., Dai, J., Luo, T.: A Multiple Constraint Quality of Service Routing Algorithm Base on Dominating Tree. In: International Conference on Computational Intelligence and Software Engineering (CISE 2009), Wuhan, December 11-13, pp. 1–4 (2009)Google Scholar
- 81.Juan, T.J., Vallego Edgar, E., Enrique, M.: MOCEA: A Multi Objective Clustering Evolutionary Algorithm for Inferring Protein-Protein Functional Interactions. In: GECCO 2009, Montréal, Québec, Canada, July 8-12, pp. 1793–1794 (2009)Google Scholar
- 82.Basgalupp Márcio, P., Barros Rodrigo, C., Carvalho André, C.P.L.F., de Freitas Alex A., Ruiz Duncan, D.: LEGAL-Tree: A Lexicographic Multi-Objective Genetic Algorithm for Decision Tree Induction. In: SAC 2009, Honolulu, Hawaii, USA, March 8-12, pp. 1085–1090 (2009)Google Scholar
- 83.Li, M., Zheng, J., Li, K., Wu, J., Xiao, G.: An Spanning Tree Based Method for Pruning Non-Dominated Solutions in Multi-Objective Optimization Problems. In: Proceedings of the 2009 IEEE International Conference on Systems, Man and Cybernetics, San Antonio, TX, USA, pp. 4882–4887 (October 2009)Google Scholar
- 84.Fallah-Jamshidi, S., Karimi, N., Zandieh, M.: A hybrid multi-objective genetic algorithm for planning order release date in two-level assembly system with random lead times. Expert Systems with Applications 38(11), 13549–13554 (2011)Google Scholar
- 85.Andreas, K., Kun, Y.: Multi-objective energy-efficient dense deployment in wireless sensor networks using a hybrid problem-specific MOEA/D. Applied Soft Computing 11(6), 4117–4134 (2011)CrossRefGoogle Scholar
- 86.Behnamian, J., Zandieh, M., Ghomi, S.M.T., Fatemi: Bi-objective parallel machines scheduling with sequence-dependent setup times using hybrid metaheuristics and weighted min-max technique. Soft Computing 15(7), 1313–1331 (2011)Google Scholar
- 87.Noman, Q.S., Mariyam, S.S.: Memetic Elitist Pareto Differential Evolution Algorithm based Radial Basis Function Networks for Classification Problems. Applied Soft Computing 11(8), 5565–5581 (2011)CrossRefGoogle Scholar
- 88.Lu, Y., Zhou, J., Qin, H., Wang, Y., Zhang, Y.: A hybrid multi-objective cultural algorithm for short-term environmental/economic hydrothermal scheduling. Energy Conversion and Management 52(5), 2121–2134 (2011)CrossRefGoogle Scholar
- 89.Vidal Juan, C., Manuel, M., Alberto, B., Manuel, L.: Machine scheduling in custom furniture industry through neuro-evolutionary hybridization. Applied Soft Computing 11(2), 1600–1613 (2011)CrossRefGoogle Scholar
- 90.Sivakumar, K., Balamurugan, C., Ramabalan, S.: Concurrent multi-objective tolerance allocation of mechanical asemblies considering alternative manufacturing process selection. International Journal of Advanced Manufacturing Technology 53(5-8), 711–732 (2011)CrossRefGoogle Scholar
- 91.Chen, W., Shi, Y.-J., Teng, H.-F.: A Generalized Differential Evolution Combined with EDA for Multi-objective Optimization Problems. In: Huang, D.-S., Wunsch II, D.C., Levine, D.S., Jo, K.-H. (eds.) ICIC 2008. LNCS (LNAI), vol. 5227, pp. 140–147. Springer, Heidelberg (2008)CrossRefGoogle Scholar
- 92.Fernández, J.C., Hervás, C., Martínez-Estudillo, F.J., Gutiérrez, P.A.: Memetic Pareto Evolutionary Artificial Neural Networks to determine growth/no-growth in predictive microbiology. Applied Soft Computing 11(1), 534–550 (2011)CrossRefGoogle Scholar
- 93.Zhang, J., Zhang, Y., Qin, P.: Immune Clonal Differential Evolution Algorithm for Multi-Objective Flexible Job-Shop Scheduling Problem. In: 2010 International Conference on Artificial Intelligence and Education (ICAIE), Hangzhou, October 29-30, pp. 73–76 (2010)Google Scholar
- 94.Jarosz, P., Burczyski, T.: Coupling of Immune Algorithms and Game Theory in Multiobjective Optimization. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS, vol. 6114, pp. 500–507. Springer, Heidelberg (2010)CrossRefGoogle Scholar
- 95.Xiao, G., China, G., Mei, J.: Reactive Power Optimization Based on Hybrid Particle Swarm Optimization Algorithm. In: 2010 Asia-Pacific Conference on Wearable Computing Systems, pp. 173–177 (2010)Google Scholar
- 96.Almeida Leandro, M., Ludermir Teresa, B.: A multi-objective memetic and hybrid methodology for optimizing the parameters and performance of artificial neural networks. Neurocomputing 73(7-9), 1438–1450 (2010)CrossRefGoogle Scholar
- 97.Abhay, K., Deepak, S., Kalyanmoy, D.: A Hybrid Multi-Objective Optimization Procedure Using PCX Based NSGA-II and Sequential Quadratic Programming. In: IEEE Congress on Evolutionary Computation (CEC 2007), Singapore, September 25-28, pp. 3011–3018 (2007)Google Scholar
- 98.Murugan, P., Kannan, S., Baskar, S.: Application of NSGA-II Algorithm to Single-Objective Transmission Constrained Generation Expansion Planning. IEEE Transactions on Power Systems 24(4), 1790–1797 (2009)CrossRefGoogle Scholar
- 99.Wang, M., Dai, G., Hu, H.: Improved NSGA-II algorithm for optimization of constrained functions. In: 2010 International Conference on Machine Vision and Human-Machine Interface (MVHI), Kaifeng, China, April 24-25, pp. 673–675 (2010)Google Scholar
- 100.Masahiko, S., Aguirre Hernán E., Kiyoshi, T.: Effects of δ-Similar Elimination and Controlled Elitism in the NSGA-II Multiobjective Evolutionary Algorithm. In: 2006 IEEE Congress on Evolutionary Computation, Vancouver, BC, Canada, July 16-21, pp. 1164–1171 (2006)Google Scholar
- 101.Yu, L., Wang, P., Zhu, H.: A Novel Diversity Preservation Strategy based on Ranking Integration for Solving Some Specific Multi-Objective Problems. In: 2010 Ninth International Symposium on Distributed Computing and Applications to Business, Engineering and Science, Hong Kong, August 10-12, pp. 97–101 (2010)Google Scholar
- 102.Qiang, Y., Zhao, J.-J., Chen, J.-J., Wang, X.-G.: Workload Control of Autonomic Database. In: 2009 2nd International Conference on Power Electronics and Intelligent Transportation System (PEITS), Shenzhen, December 19-20, pp. 263–267 (2009)Google Scholar
- 103.Mansour, M.R., Santos, A.C., London Jr., J.B., Delbem, A.C.B., Bretas, N.G.: Node-depth Encoding and Evolutionary Algorithms Applied to Service Restoration in Distribution Systems. In: 2010 IEEE Power and Energy Society General Meeting, Minneapolis, MN, July 25-29, pp. 11–18 (2010)Google Scholar
- 104.Lakashminarasimman, N., Baskar, S., Alphones, A.: Multiobjective Mobile Antenna Location Identification using Evolutionary Optimization Algorithm. In: 2010 Second International Conference on Computing, Communication and Networking Technologies, Karur, July 29-31, pp. 1–4 (2010)Google Scholar
- 105.dos Santos, C.L., Piergiorgio, A.: Multiobjective Electromagnetic Optimization Based on a Nondominated Sorting Genetic Approach with a Chaotic Crossover Operator. IEEE Transactions on Magnetics 44(6), 1078–1081 (2008)CrossRefGoogle Scholar
- 106.Hernán, A., Kiyoshi, T.: Adaptive ε-Ranking on MNK-Landscapes. In: 2009 IEEE Symposium on Computational Intelligence in Miulti-Criteria Decision-Making (MCDM 2009), Nashville, TN, March 30-April 2, pp. 104–111 (2009)Google Scholar
- 107.Sun, Y., Shen, G.: Improved NSGA-II Multi-objective Genetic Algorithm Based on Hybridization-encouraged Mechanism. Chinese Journal of Aeronautics 21(6), 540–549 (2008)CrossRefGoogle Scholar
- 108.Jia, J., Chen, J., Chang, G.-R.: Efficient Cover Set Selection in Wireless Sensor Networks. Acta Automatica Sinica 34(9), 1157–1162 (2008)CrossRefGoogle Scholar
- 109.Nawaz, R.K.S., Siddique, N.H., Jim, T.: Improved precedence preservation crossover for multi-objective job shop scheduling problem. Evolving Systems 2, 119–129 (2011)CrossRefGoogle Scholar
- 110.Onety, R.E., Moreira, G.J.P., Neto, O.M., Takahashi, R.H.C.: Variable Neighborhood Multiobjective Genetic Algorithm for the Optimization of Routes on IP Networks. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) EMO 2011. LNCS, vol. 6576, pp. 433–447. Springer, Heidelberg (2011)CrossRefGoogle Scholar
- 111.Santosh, T., Georges, F., Kalyanmoy, D.: AMGA2: improving the performance of the archive-based micro-genetic algorithm for multi-objective optimization. Engineering Optimization 43(4), 377–401 (2011)CrossRefGoogle Scholar
- 112.Eduardo, F., Edy, L., Fernando, L., Coello Coello, C.A.: Increasing selective pressure towards the best compromise in evolutionary multiobjective optimization: The extended NOSGA method. Information Sciences 181(1), 44–56 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
- 113.Wang, L., Liang, Y., Yang, J.: Improved Multi-Objective PSO Algorithm for Optimization Problems. In: 2010 IEEE International Conference on Progress in Informatics and Computing (PIC), Shanghai, December 10-12, pp. 195–198 (2010)Google Scholar
- 114.Sun, C.: An improved differential evolution and novel crowding distance metric for multi-objective optimization. In: 2010 3rd International Symposium on Knowledge Acquisition and Modeling, Wuhan, October 20-21, pp. 265–268 (2010)Google Scholar
- 115.Hisao, I., Noritaka, T., Yusuke, N.: Diversity/improvement by Non-Geometric Binary Crossover in Evolutionary Multiobjective Optimization. IEEE Transactions on Evolutionary Computation 14(6), 985–998 (2010)CrossRefGoogle Scholar
- 116.Kalyanmoy, D.: Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems. Technical Report No. CI-49/98, Department of Computer Science/XI, University of Dortmund, Germany (October 1998)Google Scholar
- 117.Viennet, R., Fontiex, C., Marc, I.: Multicriteria Optimization Using a Genetic Algorithm for Determining a Pareto Set. Journal of Systems Science 27(2), 255–260 (1996)zbMATHCrossRefGoogle Scholar
- 118.Saxena, D.K., Zhang, Q., Duro, J.A., Tiwari, A.: Framework for Many-Objective Test Problems with Both Simple and Complicated Pareto-Set Shapes. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) EMO 2011. LNCS, vol. 6576, pp. 197–211. Springer, Heidelberg (2011)CrossRefGoogle Scholar
- 119.Trautmann, H., Ligges, U., Mehnen, J., Preuß, M.: A Convergence Criterion for Multiobjective Evolutionary Algorithms Based on Systematic Statistical Testing. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 825–836. Springer, Heidelberg (2008)CrossRefGoogle Scholar
- 120.Wagner, T., Trautmann, H., Naujoks, B.: OCD: Online Convergence Detection for Evolutionary Multi-Objective Algorithms Based on Statistical Testing. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp. 198–215. Springer, Heidelberg (2009)CrossRefGoogle Scholar
- 121.Liang, J.J., Suganthan, P.N., Deb, K.: Novel Composition Test Functions for Numerical Global Optimization. In: Proceedings of the 2005 IEEE Symposium on Swarm Intelligence (SIS 2005), June 8-10, pp. 68–75 (2005)Google Scholar
- 122.Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Multi-Objective Optimization Test Problems. In: Proceedings of the 2002 Congress on Evolutionary Computation (CEC 2002), Honolul, HI, USA, May 12-17, pp. 825–830 (2002)Google Scholar
- 123.Arnaud, L., Laetitia, J., El-Ghazali, T.: A software framework based on a conceptual unified model for evolutionary multiobjective optimization: ParadisEO-MOEO. European Journal of Operational Research 209(2), 104–112 (2011)MathSciNetCrossRefGoogle Scholar
- 124.Gao, G., Zhang, G., Huang, G., Gu, P., Liu, F.: Improved Multi-objective Evolutionary Algorithm Based on Three-way Radix Quicksort. In: 2010 3rd IEEE International Conference on Computer Science and Information Technology (ICCSIT), Chengdu, July 9-11, pp. 378–382 (2010)Google Scholar
- 125.Sun, H., Ding, Y.: A Scalable Method of E-Service Workflow Emergence Based on the Bio-Network. In: Fourth International Conference on Natural Computation (ICNC 2008), October 18-20, pp. 165–169 (2008)Google Scholar
- 126.Liu, L., Zhang, X., Xie, L., Du, J.: A Novel Multi-Objective Particle Swarm Optimization based on Dynamic Crowding Distance. In: IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS 2009), November 20-22, pp. 481–485 (2009)Google Scholar
Copyright information
© Springer-Verlag GmbH Berlin Heidelberg 2013