Skip to main content

On Some Aspects of Nature-Based Algorithms to Solve Multi-Objective Problems

  • Chapter
Artificial Intelligence, Evolutionary Computing and Metaheuristics

Part of the book series: Studies in Computational Intelligence ((SCI,volume 427))

Abstract

This chapter presents an overview of various nature-based algorithms to solve multi-objective problems with the particular emphasis on Multi-Objective Evolutionary Algorithms based on Genetic Algorithm. Some of the significant hybridization and the modification of the benchmark algorithms have also been discussed as well. The complexity issues have been outlined and various test problems to show the effectiveness of such algorithms have also been summarized. At the end, a brief discussion on the software packages used to model these type of algorithms are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pareto, V.: Cours d’e_conomie politique professe_ a_ l’universite_de Lausanne, vol. 1, 2. F. Rouge, Laussanne (1896)

    Google Scholar 

  2. Hung, S.-J.: Activity-based divergent supply chain planning for competitive advantage in the risky global environment: A DEMATEL-ANP fuzzy goal programming approach. Expert Systems with Applications 38(8), 9053–9062 (2011)

    Article  Google Scholar 

  3. Mirakhorli, A.: Multi-objective optimization of reverse logistics network with fuzzy demand and return-product using an interactive fuzzy goal programming approach. In: 40th International Conference on Computers and Industrial Engineering: Soft Computing Techniques for Advanced Manufacturing and Service Systems, Awaji Island, Japan (2010)

    Google Scholar 

  4. Wu, C., Barnes, D., Rosenberg, D., Luo, X.: An analytic network process-mixed integer multi-objective programming model for partner selection in agile supply chains. Production Planning & Control 20(3), 254–275 (2009)

    Article  Google Scholar 

  5. Susmita, B., Bhattacharya, R.: Applying modified NSGA-II for bi-objective supply chain problem. Journal of Intelligent Mamnufacturing (2012), doi: 10.1007/s10845-011-0617-2

    Google Scholar 

  6. Eric, B., Marco, D., Guy, T.: Swarm Intelligence From Natural to Artificial Systems. Oxford University Press, New York (1999)

    MATH  Google Scholar 

  7. Faro, J., Combadao, J., Gordo, I.: Did Germinal Centers Evolve Under Differential Effects of Diversity vs Affinity? In: Bersini, H., Carneiro, J. (eds.) ICARIS 2006. LNCS, vol. 4163, pp. 1–8. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Coello Coello, C.A., Lamont, G.B., van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Springer, Berlin (2007)

    MATH  Google Scholar 

  9. Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  10. Goldberg David, E.: Genetic Algorithms in Search, Optimization & Machine Learning, Fifth Indian Reprint. Pearson Education, Delhi (1989)

    Google Scholar 

  11. Srinivas, N., Deb, K.: Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evolutionary Computations 2(3), 221–248 (1994)

    Article  Google Scholar 

  12. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computing 6(2), 182–197 (2002)

    Article  Google Scholar 

  13. Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)

    Article  Google Scholar 

  14. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. In: Giannakoglou, K., Tsahalis, D., Periaux, J., Papailou, P., Fogarty, T. (eds.) EUROGEN 2001. Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, Athens, Greece, pp. 95–100 (2001)

    Google Scholar 

  15. Knowles Joshua, D., Corne David, W.: Approximating the Nondominated Front Using teh Pareto Archived Evolution Strategy. Evolutionary Computation 8(2), 149–172 (2000)

    Article  Google Scholar 

  16. Horn, J., Nafpliotis, N., Goldberg, D.E.: A Niched Pareto Genetic Algorithm for Multiobjective Optimization. In: Proceeding of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computatyional Intelligence, vol. 1, pp. 82–87. IEEE Service Center, Piscataway (1994)

    Google Scholar 

  17. Erickson, M., Mayer, A., Horn, J.: The Niched Pareto Genetic Algorithm 2 Applied to the Design of Groundwater Remediation Systems. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 681–695. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. Corne, D.W., Knowles, J.D., Oates, M.J.: The Pareto Envelope-based Selection Algorithm for Multiobjective Optimization. In: Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.-P. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 839–848. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  19. Corne, D.W., Jerram, N.R., Knowles, J.D., Oates, M.J.: PESA-II: Regionbased Selection in Evolutionary Multiobjective Optimization. In: Spector, L., Goosman, E.D., Wu, A., Langdon, W., Voigt, H.M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001), pp. 283–290. Morgan Kaufmann Publishers, San Francisco (2001)

    Google Scholar 

  20. Veldhuizen, D.A., van Lamont, G.B.: Multiobjective Optimization with Messy Genetic Algorithms. In: Proceedings of the 2000 ACM Symposium on Applied Computing. ACM, Villa Olmo (2000)

    Google Scholar 

  21. Deb, K.: Binary and Floating-Point Function Optimization using Messy Genetic Algorithms. PhD Thesis, University of Alabama, Tuscaloosa, Alabama (1991)

    Google Scholar 

  22. Coello Coello, C.A., Toscano Pulido, G.: A Micro-Genetic Algorithm for Multiobjective Optimization. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 126–140. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  23. Schaffer, J.D.: Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. In: Genetic Algorithms and their Applications: Proceedings of the First International Conference on Genetic Algorithms, pp. 93–100. Lawrence Erlbaum, Hillsdale (1985)

    Google Scholar 

  24. Hajela, P., Lin, C.Y.: Genetic search strategies in multicriterion optimal design. Structural Optimization 4, 99–107 (1992)

    Article  Google Scholar 

  25. Lu, H., Yen, G.G.: Rank-density-based multiobjective genetic algorithm and benchmark test function study. IEEE Transactions on Evolutionary Computation 7(4), 325–343 (2003)

    Article  Google Scholar 

  26. Fourman Michael, P.: Compaction of Symbolic Layout using Genetic Algorithms. In: Grefenstette, J.J. (ed.) Genetic Algorithms and their Applications: Proceedings of the First International Conference on Genetic Algorithms, pp. 141–153. Lawrence Erlbaum, Hillsdale, Hillsdale (1985)

    Google Scholar 

  27. Eberhart, R.C., Kenndy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth Symposium on Micro Machine and Human Science, pp. 39–43. IEEE Service Center, Piscataway (1995)

    Chapter  Google Scholar 

  28. Eberhart, R.C., Shi, Y.: Comparison between genetic algorithms and particle swarm optimization. In: Porto, V.W., et al. (eds.) Evolutionaey Programming, vol. VII, pp. 611–616. Springer (1998)

    Google Scholar 

  29. Durillo, J.J., Nebro, A.J., García-Nieto, J., Alba, E.: On the Velocity Update in Multi-Objective Particle Swarm Optimizers. In: Coello Coello, C.A., Dhaenens, C., Jourdan, L. (eds.) Advances in Multi-Objective Nature Inspired Computing. SCI, vol. 272, pp. 45–62. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  30. Reyes-Sierra, M., Coello Coello, C.A.: Improving PSO-Based Multi-objective Optimization Using Crowding, Mutation and ε-Dominance. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 505–519. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  31. Durillo, J.J., García-Nieto, J., Nebro, A.J., Coello Coello, C.A., Luna, F., Alba, E.: Multi-Objective Particle Swarm Optimizers: An Experimental Comparison. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp. 495–509. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  32. Ratnaweera, A., Halgamuge, S., Watson, H.: Self-organizing hierarchical particle swarm optimizer with time-varying accelration coefficients. International Journal of Computational Intelligence Research 8(3), 240–255 (2004)

    Google Scholar 

  33. Storn, R., Price, K.V.: Differential evolution-A simple and efficient adaptive scheme for global optimization over continuous spaces, Technical Report, ICSI, University of California, Berkeley (1995)

    Google Scholar 

  34. Chang, C.S., Xu, D., Quek, H.: Pareto-optimal set based multiobjective tuning of fuzzy automatic train operation for mas transit system. IEE Proceedings on Electric Power Applications 146(5), 577–583 (1999)

    Article  Google Scholar 

  35. Saku, K., Jouni, L.: Generalized Differential Evolution for Constrained Multi-Objective Optimization. In: Thu, B.L., Sameer, A. (eds.) Multi-Objective Optimization in Computational Intelligence Theory and Practice, pp. 43–75. Information Science Reference, USA (2008)

    Google Scholar 

  36. Bergey, P.K.: An agent enhanced intelligent spreadsheet solver for multicriteria decision making. In: Proceedings of teh Fifth American Conference on Information Systems (AMCIS 1999), Milwaukee, WI, pp. 966–968 (1999)

    Google Scholar 

  37. Abbass, H.A.: The self-adaptive Pareto differential evolution algorithm. In: Proceedings of the 2002 Congress on Evolutionary Computation (CEC 2002), Honolulu, HI, pp. 831–836. IEEE Service Center (2002)

    Google Scholar 

  38. Madavan, N.K.: Multi-objective optimization usaing a Pareto differential evolution approach. In: Proceedings of the 2002 Congress on Evlutionary Computation (CEC 2002), Honolulu, HI, pp. 1145–1150. IEEE Service Center (2002)

    Google Scholar 

  39. Zaharie, D.: Multi-objective optimization with adaptive Pareto differential evolution. In: Proceedings of Symposium on Intelligent Systems and Applications (SIA 2003), Iasi, Romania (2003)

    Google Scholar 

  40. Xue, F., Sanderson, A.C., Graves, R.J.: Pareto-based multi-objective differential evolution. In: Proceedings of the 2003 Congress on Evolutionary Computation (CEC 2003), Canberra, Australia, pp. 862–869. IEEE Service Center (2003)

    Google Scholar 

  41. Parsopoulos, K.E., Tasoulis, D.K., Pavlidis, N.G., Plagianakos, V.P., Vrahatis, M.N.: Vector evaluated differential evolution for multiobjective optimization. In: Proceedings of the 2004 Congress on Evolutionary Computation (CEC 2004), Portland, OR, pp. 204–211. IEEE Service Center (2004)

    Google Scholar 

  42. Li, H., Zhang, Q.: A Multiobjective Differential Evolution Based on Decomposition for Multiobjective Optimization with Variable Linkages. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 583–592. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  43. Hernáandez-Diaz, A.G., Santana-Quintero, L.V., Coello Coello, C.A., Caballero, R., Molina, J.: A new proposal for multi-objective optimization using differenetial evolution and rough set theory. In: Proceeings of the Genetic and Evolutionary Computation Conference, GECCO 2006, Seattle, WA, pp. 675–682. ACM Press (2006)

    Google Scholar 

  44. Bersini, H., Varela, F.J.: A Variant of Evolution Strategies for Vector Optimization. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 193–197. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  45. Yoo, J., Hajela, P.: Immune network simulations in multicriterion design. Structural Optimization 18, 85–94 (1999)

    Google Scholar 

  46. Gambardella, L.M., Dorigo, M.: Ant-Q: A reinforcement learning approach to teh traveling salesman problem. In: Prieditis, A., Russell, S. (eds.) Proceedings of the 12th International Conference on Machine Learning, pp. 252–260. Morgan Kaufmann (1995)

    Google Scholar 

  47. Mariano, C.E., Morales, E.: MOAQ an Ant-Q algorithm for multiple objective optimization problems. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Genetic and Evolutionary Compouting Conference (GECCO 1999), vol. I, pp. 894–901. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  48. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated Annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  49. Serafini, P.: Simulated Annealing for Multiple Objective Optimization Problems. In: Tzeng, G., Wang, H., Wen, U., Yu, P. (eds.) Proceedings of the 10th International Conference on Multiple Criteria Decision Making: Expand and Enrich the Domains of Thinking and Application, vol. I, pp. 283–294. Springer, Berlin (1994)

    Google Scholar 

  50. Glover, F.: Future paths for integer programming and links to Artificial Intelligence. Computers and Opereations Research 13(5), 533–549 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  51. Gandibleux, X., Mezdaoui, N., Fréville: A Tabu Search Procedure to Solve Combinatorial Optimisation Porblems. In: Caballero, R., Ruiz, F., Steuer, R.E. (eds.) Advances in Multiple Objective and Goal Programming. LNEMS, vol. 455, pp. 291–300. Springer (1997)

    Google Scholar 

  52. Huang, J., Huang, X., Ma, Y., Lin, Y.: On a high-dimensional objective genetic algorithm and its nonlinear dynamic properties. Communications in Nonlinear Science and Numerical Simulation 16(9), 3825–3834 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  53. Kumar, R., Rockett, P.I.: Improved sampling of the Pareto-front in multiobjective genetic optimizations by steady-state evolution: a Pareto converging genetic algorithm. Evolutionary Computation 10(3), 283–314 (2002)

    Article  Google Scholar 

  54. Yang, X., Shi, Y.: A Real-coded Quantum Clone Multi-Objective Evolutionary Algorithm. In: 2011 International Conference on Consumer Electronics, Communications and Networks (CECNet 2011), XianNing, April 16-18, pp. 4683–4687 (2011)

    Google Scholar 

  55. Nie, L., Gao, L., Li, P., Wang, X.: Multi-Objective Optimization for Dynamic Single-Machine Scheduling. In: Tan, Y., Shi, Y., Chai, Y., Wang, G. (eds.) ICSI 2011, Part II. LNCS, vol. 6729, pp. 1–9. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  56. Pachón, V., Mata, J., Domínguez, J.L., Maña, M.J.: Multi-objective Evolutionary Approach for Subgroup Discovery. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds.) HAIS 2011, Part II. LNCS, vol. 6679, pp. 271–278. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  57. Nicola, B., Marco, L., Günter, R.: Convergence Rates of SMS-MOEA on Continuous Bi-Objective Problem Classes. In: FOGA 2011, Schwarzenberg, Austria, January 5-9 (2011)

    Google Scholar 

  58. James, B., Chris, A.: The cross-entropy method in multi-objective optimization: An asessment. European Journal of Operational Research 211(1), 112–121 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  59. Shin, K.S., Park, J.-O., Kim, Y.K.: Multi-Objective FMS process planning with variuous flexibilities using a symbiotic evolutionary algorithm. Computers and Operations Research 38(3), 702–712 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  60. Taher, N., Ehsan, A.F., Majid, N.: An efficient multi-objective modified shuffled frog leaping algorithm for distribution feeder configuration problem. European Transactions on Electrical Power 21(1), 721–739 (2010)

    Google Scholar 

  61. Li, Z.-Y., Chen, C., Ren, C.-A., Mohammed Esraa, M.: Novel Objective-Space Dividing Multi-Objectives Evolutionary Algorithm and its Convergence Property. In: 2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA), Changsha, September 23-26, pp. 372–379 (2010)

    Google Scholar 

  62. Zhang, G., Li, Y., Marian, G.: A Multi-Objective Membrane Algorithm for Knapsack Problems. In: 2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA), Changsha, September 23-26, pp. 604–609 (2010)

    Google Scholar 

  63. Mo, L., Dai, G., Zhu, J.: The RM-MEDA Based on Elitist Strategy. In: Cai, Z., Hu, C., Kang, Z., Liu, Y. (eds.) ISICA 2010. LNCS, vol. 6382, pp. 229–239. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  64. Li, H., Landa-Silva, D.: An Elitist GRASP Metaheuristic for the Multi-objective Quadratic Assignment Problem. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp. 481–494. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  65. Taher, N.: An efficient multi-objective HBMO algorithm for distribution feeder configuration. Expert Systems with Applications 38(3), 2878–2887 (2011)

    Article  Google Scholar 

  66. Tabatabaei, S.M., Vahidi, B., Hosseinian, S.H., Madani, S.M.: Bacterial Foraging-Based Solution for Optimal Capacitor Allocation in Distribution Systems. In: 2010 IEEE International Conference on Power and Energy (PECon 2010), Kuala Lumpur, Malaysia, November 29-December 1, pp. 253–258 (2010)

    Google Scholar 

  67. Reynolds, R.G.: An Introduction to Cultural Algorithms. In: Sebald, A.V., Fogel, L.J. (eds.) Proceedings of the Third Annual Conference on Evolutionary Programming, pp. 131–139. World Scientific, River Edge (1994)

    Google Scholar 

  68. Coello Coello, C.A., Landa, B.R.: Evolutionary Multiobjective Optimization using A Cultural Algorithm. In: 2003 IEEE Swarm Intelligence Symposium Proceedings, Indianapolis, Indiana, USA, pp. 6–13. IEEE Service Center (April 2003)

    Google Scholar 

  69. Yang, X.-S.: Firefly Algorithms for Multimodal Optimization. In: Watanabe, O., Zeugmann, T. (eds.) SAGA 2009. LNCS, vol. 5792, pp. 169–178. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  70. Yang, X.-S., Deb, S.: Cuckoo Search via Lévy Flights. In: Proceedings of World Congress on Nature and Biologically Inspired Computing (NaBIC 2009), India, pp. 210–214. IEEE, USA (2009)

    Chapter  Google Scholar 

  71. Esmat, R., Hossein, N.-P., Saeid, S.: GSA: A Gravitational Search Algorithm. Information Sciences 179(13), 2232–2248 (2009)

    Article  MATH  Google Scholar 

  72. Hadi, N., Mahdi, N., Patrick, S.: Non-dominated Sorting Gravitational Search Algorithm. In: International Conference on Swarm Intelligence (ICSI 2011), Cergy, France, June 14-15, pp. 1–10 (2011)

    Google Scholar 

  73. Kaveh, A., Talatahari, S.: A novel heuristic optimization method: charged system search. Acta Mechanica 213(3-4), 267–289 (2010)

    Article  MATH  Google Scholar 

  74. Shah-Hosseini: The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm. International Journal of Bio-Inspired Computation 1(1-2), 71–79 (2009)

    Article  Google Scholar 

  75. Pablo, R., Ismael, R., Fernando, R.: Using River Formation Dynamics to Design Heuristic Algorithms. Springer (2007) ISBN 978-3-540-73553-3

    Google Scholar 

  76. Vicsek, T., Czirok, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Physical Reviews Letters 75, 1226–1229 (1995)

    Article  Google Scholar 

  77. María, L.J., Raúl, R.J., Sebastián, V.: G3PARM: A Grammar Guided Genetic Programming Algorithm for Mining Association Rules. In: 2010 IEEE Congress on Evolutionary Computation (CEC), Barcelona, July 18-23, pp. 1–8 (2010)

    Google Scholar 

  78. Baños, R., Gil, C., Reca, J., Ortega, J.: A Pareto-based memetic algorithm for optimization of looped water distribution systems. Engineering Optimization 42(3), 223–240 (2010)

    Article  Google Scholar 

  79. Usman, F., Lam, C.P.: A Max-Min Multiobjective Technique to Optimize Model Based Test Suite. In: 2009 10th ACIS International Conference on Software Engineering, Artificial Intelligences, Networking and Parallel/Distributed Computing, Daegu, May 27-29, pp. 569–574 (2009)

    Google Scholar 

  80. Wang, X., Yu, S.-H., Dai, J., Luo, T.: A Multiple Constraint Quality of Service Routing Algorithm Base on Dominating Tree. In: International Conference on Computational Intelligence and Software Engineering (CISE 2009), Wuhan, December 11-13, pp. 1–4 (2009)

    Google Scholar 

  81. Juan, T.J., Vallego Edgar, E., Enrique, M.: MOCEA: A Multi Objective Clustering Evolutionary Algorithm for Inferring Protein-Protein Functional Interactions. In: GECCO 2009, Montréal, Québec, Canada, July 8-12, pp. 1793–1794 (2009)

    Google Scholar 

  82. Basgalupp Márcio, P., Barros Rodrigo, C., Carvalho André, C.P.L.F., de Freitas Alex A., Ruiz Duncan, D.: LEGAL-Tree: A Lexicographic Multi-Objective Genetic Algorithm for Decision Tree Induction. In: SAC 2009, Honolulu, Hawaii, USA, March 8-12, pp. 1085–1090 (2009)

    Google Scholar 

  83. Li, M., Zheng, J., Li, K., Wu, J., Xiao, G.: An Spanning Tree Based Method for Pruning Non-Dominated Solutions in Multi-Objective Optimization Problems. In: Proceedings of the 2009 IEEE International Conference on Systems, Man and Cybernetics, San Antonio, TX, USA, pp. 4882–4887 (October 2009)

    Google Scholar 

  84. Fallah-Jamshidi, S., Karimi, N., Zandieh, M.: A hybrid multi-objective genetic algorithm for planning order release date in two-level assembly system with random lead times. Expert Systems with Applications 38(11), 13549–13554 (2011)

    Google Scholar 

  85. Andreas, K., Kun, Y.: Multi-objective energy-efficient dense deployment in wireless sensor networks using a hybrid problem-specific MOEA/D. Applied Soft Computing 11(6), 4117–4134 (2011)

    Article  Google Scholar 

  86. Behnamian, J., Zandieh, M., Ghomi, S.M.T., Fatemi: Bi-objective parallel machines scheduling with sequence-dependent setup times using hybrid metaheuristics and weighted min-max technique. Soft Computing 15(7), 1313–1331 (2011)

    Google Scholar 

  87. Noman, Q.S., Mariyam, S.S.: Memetic Elitist Pareto Differential Evolution Algorithm based Radial Basis Function Networks for Classification Problems. Applied Soft Computing 11(8), 5565–5581 (2011)

    Article  Google Scholar 

  88. Lu, Y., Zhou, J., Qin, H., Wang, Y., Zhang, Y.: A hybrid multi-objective cultural algorithm for short-term environmental/economic hydrothermal scheduling. Energy Conversion and Management 52(5), 2121–2134 (2011)

    Article  Google Scholar 

  89. Vidal Juan, C., Manuel, M., Alberto, B., Manuel, L.: Machine scheduling in custom furniture industry through neuro-evolutionary hybridization. Applied Soft Computing 11(2), 1600–1613 (2011)

    Article  Google Scholar 

  90. Sivakumar, K., Balamurugan, C., Ramabalan, S.: Concurrent multi-objective tolerance allocation of mechanical asemblies considering alternative manufacturing process selection. International Journal of Advanced Manufacturing Technology 53(5-8), 711–732 (2011)

    Article  Google Scholar 

  91. Chen, W., Shi, Y.-J., Teng, H.-F.: A Generalized Differential Evolution Combined with EDA for Multi-objective Optimization Problems. In: Huang, D.-S., Wunsch II, D.C., Levine, D.S., Jo, K.-H. (eds.) ICIC 2008. LNCS (LNAI), vol. 5227, pp. 140–147. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  92. Fernández, J.C., Hervás, C., Martínez-Estudillo, F.J., Gutiérrez, P.A.: Memetic Pareto Evolutionary Artificial Neural Networks to determine growth/no-growth in predictive microbiology. Applied Soft Computing 11(1), 534–550 (2011)

    Article  Google Scholar 

  93. Zhang, J., Zhang, Y., Qin, P.: Immune Clonal Differential Evolution Algorithm for Multi-Objective Flexible Job-Shop Scheduling Problem. In: 2010 International Conference on Artificial Intelligence and Education (ICAIE), Hangzhou, October 29-30, pp. 73–76 (2010)

    Google Scholar 

  94. Jarosz, P., Burczyski, T.: Coupling of Immune Algorithms and Game Theory in Multiobjective Optimization. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS, vol. 6114, pp. 500–507. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  95. Xiao, G., China, G., Mei, J.: Reactive Power Optimization Based on Hybrid Particle Swarm Optimization Algorithm. In: 2010 Asia-Pacific Conference on Wearable Computing Systems, pp. 173–177 (2010)

    Google Scholar 

  96. Almeida Leandro, M., Ludermir Teresa, B.: A multi-objective memetic and hybrid methodology for optimizing the parameters and performance of artificial neural networks. Neurocomputing 73(7-9), 1438–1450 (2010)

    Article  Google Scholar 

  97. Abhay, K., Deepak, S., Kalyanmoy, D.: A Hybrid Multi-Objective Optimization Procedure Using PCX Based NSGA-II and Sequential Quadratic Programming. In: IEEE Congress on Evolutionary Computation (CEC 2007), Singapore, September 25-28, pp. 3011–3018 (2007)

    Google Scholar 

  98. Murugan, P., Kannan, S., Baskar, S.: Application of NSGA-II Algorithm to Single-Objective Transmission Constrained Generation Expansion Planning. IEEE Transactions on Power Systems 24(4), 1790–1797 (2009)

    Article  Google Scholar 

  99. Wang, M., Dai, G., Hu, H.: Improved NSGA-II algorithm for optimization of constrained functions. In: 2010 International Conference on Machine Vision and Human-Machine Interface (MVHI), Kaifeng, China, April 24-25, pp. 673–675 (2010)

    Google Scholar 

  100. Masahiko, S., Aguirre Hernán E., Kiyoshi, T.: Effects of δ-Similar Elimination and Controlled Elitism in the NSGA-II Multiobjective Evolutionary Algorithm. In: 2006 IEEE Congress on Evolutionary Computation, Vancouver, BC, Canada, July 16-21, pp. 1164–1171 (2006)

    Google Scholar 

  101. Yu, L., Wang, P., Zhu, H.: A Novel Diversity Preservation Strategy based on Ranking Integration for Solving Some Specific Multi-Objective Problems. In: 2010 Ninth International Symposium on Distributed Computing and Applications to Business, Engineering and Science, Hong Kong, August 10-12, pp. 97–101 (2010)

    Google Scholar 

  102. Qiang, Y., Zhao, J.-J., Chen, J.-J., Wang, X.-G.: Workload Control of Autonomic Database. In: 2009 2nd International Conference on Power Electronics and Intelligent Transportation System (PEITS), Shenzhen, December 19-20, pp. 263–267 (2009)

    Google Scholar 

  103. Mansour, M.R., Santos, A.C., London Jr., J.B., Delbem, A.C.B., Bretas, N.G.: Node-depth Encoding and Evolutionary Algorithms Applied to Service Restoration in Distribution Systems. In: 2010 IEEE Power and Energy Society General Meeting, Minneapolis, MN, July 25-29, pp. 11–18 (2010)

    Google Scholar 

  104. Lakashminarasimman, N., Baskar, S., Alphones, A.: Multiobjective Mobile Antenna Location Identification using Evolutionary Optimization Algorithm. In: 2010 Second International Conference on Computing, Communication and Networking Technologies, Karur, July 29-31, pp. 1–4 (2010)

    Google Scholar 

  105. dos Santos, C.L., Piergiorgio, A.: Multiobjective Electromagnetic Optimization Based on a Nondominated Sorting Genetic Approach with a Chaotic Crossover Operator. IEEE Transactions on Magnetics 44(6), 1078–1081 (2008)

    Article  Google Scholar 

  106. Hernán, A., Kiyoshi, T.: Adaptive ε-Ranking on MNK-Landscapes. In: 2009 IEEE Symposium on Computational Intelligence in Miulti-Criteria Decision-Making (MCDM 2009), Nashville, TN, March 30-April 2, pp. 104–111 (2009)

    Google Scholar 

  107. Sun, Y., Shen, G.: Improved NSGA-II Multi-objective Genetic Algorithm Based on Hybridization-encouraged Mechanism. Chinese Journal of Aeronautics 21(6), 540–549 (2008)

    Article  Google Scholar 

  108. Jia, J., Chen, J., Chang, G.-R.: Efficient Cover Set Selection in Wireless Sensor Networks. Acta Automatica Sinica 34(9), 1157–1162 (2008)

    Article  Google Scholar 

  109. Nawaz, R.K.S., Siddique, N.H., Jim, T.: Improved precedence preservation crossover for multi-objective job shop scheduling problem. Evolving Systems 2, 119–129 (2011)

    Article  Google Scholar 

  110. Onety, R.E., Moreira, G.J.P., Neto, O.M., Takahashi, R.H.C.: Variable Neighborhood Multiobjective Genetic Algorithm for the Optimization of Routes on IP Networks. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) EMO 2011. LNCS, vol. 6576, pp. 433–447. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  111. Santosh, T., Georges, F., Kalyanmoy, D.: AMGA2: improving the performance of the archive-based micro-genetic algorithm for multi-objective optimization. Engineering Optimization 43(4), 377–401 (2011)

    Article  Google Scholar 

  112. Eduardo, F., Edy, L., Fernando, L., Coello Coello, C.A.: Increasing selective pressure towards the best compromise in evolutionary multiobjective optimization: The extended NOSGA method. Information Sciences 181(1), 44–56 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  113. Wang, L., Liang, Y., Yang, J.: Improved Multi-Objective PSO Algorithm for Optimization Problems. In: 2010 IEEE International Conference on Progress in Informatics and Computing (PIC), Shanghai, December 10-12, pp. 195–198 (2010)

    Google Scholar 

  114. Sun, C.: An improved differential evolution and novel crowding distance metric for multi-objective optimization. In: 2010 3rd International Symposium on Knowledge Acquisition and Modeling, Wuhan, October 20-21, pp. 265–268 (2010)

    Google Scholar 

  115. Hisao, I., Noritaka, T., Yusuke, N.: Diversity/improvement by Non-Geometric Binary Crossover in Evolutionary Multiobjective Optimization. IEEE Transactions on Evolutionary Computation 14(6), 985–998 (2010)

    Article  Google Scholar 

  116. Kalyanmoy, D.: Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems. Technical Report No. CI-49/98, Department of Computer Science/XI, University of Dortmund, Germany (October 1998)

    Google Scholar 

  117. Viennet, R., Fontiex, C., Marc, I.: Multicriteria Optimization Using a Genetic Algorithm for Determining a Pareto Set. Journal of Systems Science 27(2), 255–260 (1996)

    Article  MATH  Google Scholar 

  118. Saxena, D.K., Zhang, Q., Duro, J.A., Tiwari, A.: Framework for Many-Objective Test Problems with Both Simple and Complicated Pareto-Set Shapes. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) EMO 2011. LNCS, vol. 6576, pp. 197–211. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  119. Trautmann, H., Ligges, U., Mehnen, J., Preuß, M.: A Convergence Criterion for Multiobjective Evolutionary Algorithms Based on Systematic Statistical Testing. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 825–836. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  120. Wagner, T., Trautmann, H., Naujoks, B.: OCD: Online Convergence Detection for Evolutionary Multi-Objective Algorithms Based on Statistical Testing. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp. 198–215. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  121. Liang, J.J., Suganthan, P.N., Deb, K.: Novel Composition Test Functions for Numerical Global Optimization. In: Proceedings of the 2005 IEEE Symposium on Swarm Intelligence (SIS 2005), June 8-10, pp. 68–75 (2005)

    Google Scholar 

  122. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Multi-Objective Optimization Test Problems. In: Proceedings of the 2002 Congress on Evolutionary Computation (CEC 2002), Honolul, HI, USA, May 12-17, pp. 825–830 (2002)

    Google Scholar 

  123. Arnaud, L., Laetitia, J., El-Ghazali, T.: A software framework based on a conceptual unified model for evolutionary multiobjective optimization: ParadisEO-MOEO. European Journal of Operational Research 209(2), 104–112 (2011)

    Article  MathSciNet  Google Scholar 

  124. Gao, G., Zhang, G., Huang, G., Gu, P., Liu, F.: Improved Multi-objective Evolutionary Algorithm Based on Three-way Radix Quicksort. In: 2010 3rd IEEE International Conference on Computer Science and Information Technology (ICCSIT), Chengdu, July 9-11, pp. 378–382 (2010)

    Google Scholar 

  125. Sun, H., Ding, Y.: A Scalable Method of E-Service Workflow Emergence Based on the Bio-Network. In: Fourth International Conference on Natural Computation (ICNC 2008), October 18-20, pp. 165–169 (2008)

    Google Scholar 

  126. Liu, L., Zhang, X., Xie, L., Du, J.: A Novel Multi-Objective Particle Swarm Optimization based on Dynamic Crowding Distance. In: IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS 2009), November 20-22, pp. 481–485 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susmita Bandyopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Bandyopadhyay, S., Bhattacharya, R. (2013). On Some Aspects of Nature-Based Algorithms to Solve Multi-Objective Problems. In: Yang, XS. (eds) Artificial Intelligence, Evolutionary Computing and Metaheuristics. Studies in Computational Intelligence, vol 427. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29694-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29694-9_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29693-2

  • Online ISBN: 978-3-642-29694-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics