Metaheuristic Optimization: Nature-Inspired Algorithms and Applications

  • Xin-She Yang
Part of the Studies in Computational Intelligence book series (SCI, volume 427)


Turing’s pioneer work in heuristic search has inspired many generations of research in heuristic algorithms. In the last two decades, metaheuristic algorithms have attracted strong attention in scientific communities with significant developments, especially in areas concerning swarm intelligence based algorithms. In this work, we will briefly review some of the important achievements in metaheuristics, and we will also discuss key implications in applications and topics for further research.


Differential Evolution Swarm Intelligence Harmony Search Metaheuristic Algorithm National Physical Laboratory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Afshar, A., Haddad, O.B., Marino, M.A., Adams, B.J.: Honey-bee mating optimization (HBMO) algorithm for optimal reservoir operation. J. Franklin Institute 344, 452–462 (2007)CrossRefGoogle Scholar
  2. 2.
    Auger, A., Teytaud, O.: Continuous lunches are free plus the design of optimal optimization algorithms. Algorithmica 57, 121–146 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Auger, A., Doerr, B.: Theory of Randomized Search Heuristics: Foundations and Recent Developments. World Scientific (2010)Google Scholar
  4. 4.
    Blum, C., Roli, A.: Metaheuristics in combinatorial optimisation: Overview and conceptural comparision. ACM Comput. Surv. 35, 268–308 (2003)CrossRefGoogle Scholar
  5. 5.
    Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evolutionary Computation 6, 58–73 (2002)CrossRefGoogle Scholar
  6. 6.
    Copeland, B.J.: The Essential Turing. Oxford University Press (2004)Google Scholar
  7. 7.
    Corne, D., Knowles, J.: Some multiobjective optimizers are better than others. In: Evolutionary Computation, CEC 2003, vol. 4, pp. 2506–2512 (2003)Google Scholar
  8. 8.
    Christensen, S., Oppacher, F.: Wath can we learn from No Free Lunch? In: Proc. Genetic and Evolutionary Computation Conference (GECCO 2001), pp. 1219–1226 (2001)Google Scholar
  9. 9.
    Durgun, I., Yildiz, A.R.: Structural design optimization of vehicle components using cuckoo search algorithm. Materials Testing 3, 185–188 (2012)Google Scholar
  10. 10.
    Dorigo, M., Stütle, T.: Ant Colony Optimization. MIT Press (2004)Google Scholar
  11. 11.
    Floudas, C.A., Pardolos, P.M.: Encyclopedia of Optimization, 2nd edn. Springer (2009)Google Scholar
  12. 12.
    Geem, Z.W.: Music-Inspired Harmony Search Algorithm: Theory and Applications. Springer (2009)Google Scholar
  13. 13.
    Gandomi, A.H., Yang, X.S., Alavi, A.H.: Cuckoo search algorithm: a meteheuristic approach to solve structural optimization problems. In: Engineering with Computers, July 29 (2011), doi:10.1007/s00366-011-0241-yGoogle Scholar
  14. 14.
    Gandomi, A.H., Yang, X.S., Talatahari, S., Deb, S.: Coupled eagle strategy and differential evolution for unconstrained and constrained global optimization. Computers & Mathematics with Applications 63(1), 191–200 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Boston (1997)zbMATHCrossRefGoogle Scholar
  16. 16.
    Goldberg, D.E.: The Design of Innovation: Lessons from and for Competent Genetic Algorithms. Addison-Wesley, Reading (2002)zbMATHGoogle Scholar
  17. 17.
    Gutjahr, W.J.: Convergence Analysis of Metaheuristics. Annals of Information Systems 10, 159–187 (2010)CrossRefGoogle Scholar
  18. 18.
    Holland, J.: Adaptation in Natural and Artificial systems. University of Michigan Press, Ann Anbor (1975)Google Scholar
  19. 19.
    Igel, C., Toussaint, M.: On classes of functions for which no free lunch results hold. Inform. Process. Lett. 86, 317–321 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical Report TR06, Erciyes University, Turkey (2005)Google Scholar
  21. 21.
    Kennedy, J., Eberhart, R.: Particle swarm optimisation. In: Proc. of the IEEE Int. Conf. on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)Google Scholar
  22. 22.
    Kirkpatrick, S., Gellat, C.D., Vecchi, M.P.: Optimisation by simulated annealing. Science 220, 671–680 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Nakrani, S., Tovey, C.: On Honey Bees and Dynamic Server Allocation in Internet Hosting Centers. Adaptive Behaviour 12(3-4), 223–240 (2004)CrossRefGoogle Scholar
  24. 24.
    Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization: Algorithms and Their Computational Complexity. Springer (2010)Google Scholar
  25. 25.
    Marshall, J.A., Hinton, T.G.: Beyond no free lunch: realistic algorithms for arbitrary problem classes. In: WCCI 2010 IEEE World Congress on Computational Intelligence, Barcelona, Spain, July 18-23, pp. 1319–1324 (2010)Google Scholar
  26. 26.
    Parpinelli, R.S., Lopes, H.S.: New inspirations in swarm intelligence: a survey. Int. J. Bio-Inspired Computation 3, 1–16 (2011)CrossRefGoogle Scholar
  27. 27.
    Pham, D.T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., Zaidi, M.: The Bees Algorithm A Novel Tool for Complex Optimisation Problems. In: Proceedings of IPROMS 2006 Conference, pp. 454–461 (2006)Google Scholar
  28. 28.
    Price, K., Storn, R., Lampinen, J.: Differential Evolution: A Practical Approach to Global Optimization. Springer (2005)Google Scholar
  29. 29.
    Schumacher, C., Vose, M., Whitley, D.: The no free lunch and problem description length. In: Genetic and Evolutionary Computation Conference, GECCO 2001, pp. 565–570 (2001)Google Scholar
  30. 30.
    Shilane, D., Martikainen, J., Dudoit, S., Ovaska, S.J.: A general framework for statistical performance comparison of evolutionary computation algorithms. Information Sciences 178, 2870–2879 (2008)CrossRefGoogle Scholar
  31. 31.
    Spall, J.C., Hill, S.D., Stark, D.R.: Theoretical framework for comparing several stochastic optimization algorithms. In: Probabilistic and Randomized Methods for Design Under Uncertainty, pp. 99–117. Springer, London (2006)CrossRefGoogle Scholar
  32. 32.
    Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11, 341–359 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Turing, A.M.: Intelligent Machinery. Technical Report, National Physical Laboratory (1948)Google Scholar
  34. 34.
    Villalobos-Arias, M., Coello Coello, C.A., Hernández-Lerma, O.: Asymptotic convergence of metaheuristics for multiobjective optimization problems. Soft Computing 10, 1001–1005 (2005)CrossRefGoogle Scholar
  35. 35.
    Walton, S., Hassan, O., Morgan, K., Brown, M.R.: Modified cuckoo search: a new gradient free optimization algorithm. Chaos, Solitons & Fractals 44(9), 710–718 (2011)CrossRefGoogle Scholar
  36. 36.
    Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimisation. IEEE Transaction on Evolutionary Computation 1, 67–82 (1997)CrossRefGoogle Scholar
  37. 37.
    Wolpert, D.H., Macready, W.G.: Coevolutonary free lunches. IEEE Trans. Evolutionary Computation 9, 721–735 (2005)CrossRefGoogle Scholar
  38. 38.
    Turing Archive for the History of Computing,
  39. 39.
    Yang, X.-S.: Engineering Optimizations via Nature-Inspired Virtual Bee Algorithms. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2005. LNCS, vol. 3562, pp. 317–323. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  40. 40.
    Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press (2008)Google Scholar
  41. 41.
    Yang, X.-S.: Firefly Algorithms for Multimodal Optimization. In: Watanabe, O., Zeugmann, T. (eds.) SAGA 2009. LNCS, vol. 5792, pp. 169–178. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  42. 42.
    Yang, X.S.: Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspired Computation 2, 78–84 (2010a)CrossRefGoogle Scholar
  43. 43.
    Yang, X.S.: Engineering Optimization: An Introduction with Metaheuristic Applications. John Wiley and Sons, USA (2010b)CrossRefGoogle Scholar
  44. 44.
    Yang, X.-S.: A New Metaheuristic Bat-Inspired Algorithm. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N., et al. (eds.) NICSO 2010. Studies in Computational Intelligence, vol. 284, pp. 65–74. Springer, Heidelberg (2010c)CrossRefGoogle Scholar
  45. 45.
    Yang, X.S., Deb, S.: Cuckoo search via Lévy flights. In: Proceeings of World Congress on Nature & Biologically Inspired Computing, NaBIC 2009, pp. 210–214. IEEE Publications, USA (2009)CrossRefGoogle Scholar
  46. 46.
    Yang, X.S., Deb, S.: Engineering optimisation by cuckoo search. Int. J. Math. Modelling & Num. Optimisation 1, 330–343 (2010)zbMATHCrossRefGoogle Scholar
  47. 47.
    Yang, X.S.: Bat algorithm for multi-objective optimisation. Int. J. Bio-Inspired Computation 3(5), 267–274 (2011)Google Scholar
  48. 48.
    Yang, X.S., Deb, S.: Two-stage eagle strategy with differential evolution. Int. J. Bio-Inspired Computation 4(1), 1–5 (2012)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Yang, X.S., Hossein, S.S., Gandomi, A.H.: Firefly algorithm for solving non-convex economic dispatch problems with valve loading effect. Applied Soft Computing 12(3), 1180–1186 (2012)CrossRefGoogle Scholar
  50. 50.
    Yang, X.S., Deb, S.: Multiobjective cuckoo search for design optimization. Computers and Operations Research (October 2011) (accepted), doi:10.1016/j.cor.2011.09.026Google Scholar
  51. 51.
    Yu, L., Wang, S.Y., Lai, K.K., Nakamori, Y.: Time series forecasting with multiple candidate models: selecting or combining? Journal of Systems Science and Complexity 18(1), 1–18 (2005)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2013

Authors and Affiliations

  • Xin-She Yang
    • 1
  1. 1.Mathematics & Scientific ComputingNational Physical LaboratoryTeddingtonUK

Personalised recommendations