Skip to main content

BPA Effects In Vivo: Evidence from Animal Studies

  • Chapter
  • First Online:
Plastics in Dentistry and Estrogenicity

Abstract

Bisphenol A (2,2-bis-4-hydroxyphenyl-propane, BPA), is a well-known endocrine disruptor that is used as a monomer in the manufacture of dental sealants, epoxy resins and polycarbonate plastics that have extensive use in dentistry or medicine, in food packaging industry and in plastics’ production. BPA is contained in many everyday life items, such as house plasticware and baby bottles, from where it is released, for example, by heating, resulting in food or drink contamination. Leached components from dental composites and sealants in the oral cavity are also considered a possible source of human exposure. BPA exposure can also occur by inhalation of contaminated air, for example, from decomposed monomers during medical or dental practice [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ben-Jonathan N, Steinmetz R (1998) Xenoestrogens: the emerging story of bisphenol A. Trends Endocrinol Metab 9:124–128

    PubMed  Google Scholar 

  2. Richter CA, Birnbaum LS, Farabollini F, Newbold RR, Rubin BS, Talsness CE, Vandenbergh JG, Walser-Kuntz DR, vom Saal FS (2007) In vivo effects of bisphenol A in laboratory rodent studies. Reprod Toxicol 24:199–224

    PubMed  Google Scholar 

  3. Vandenberg LN, Maffini MV, Sonnenschein C, Rubin BS, Soto AM (2009) Bisphenol-A and the great divide: a review of controversies in the field of endocrine disruption. Endocr Rev 30:75–95

    PubMed  Google Scholar 

  4. Vom Saal FS, Akingbemi BT, Belcher SM, Birnbaum LS, Crain DA, Eriksen M, Farabollini F, Guillette LJ Jr, Hauser R, Heindel JJ, Ho SM, Hunt PA, Iguchi T, Jobling S, Kanno J, Keri RA, Knudsen KE, Laufer H, LeBlanc GA, Marcus M, McLachlan JA, Myers JP, Nadal A, Newbold RR, Olea N, Prins GS, Richter CA, Rubin BS, Sonnenschein C, Soto AM, Talsness CE, Vandenbergh JG, Vandenberg LN, Walser-Kuntz DR, Watson CS, Welshons WV, Wetherill Y, Zoeller RT (2007) Chapel Hill bisphenol A expert panel consensus statement: integration of mechanisms, effects in animals and potential to impact human health at current levels of exposure. Reprod Toxicol 24:131–138

    PubMed  Google Scholar 

  5. Tyl RW, Myers CB, Marr MC, Sloan CS, Castillo NP, Veselica MM, Seely JC, Dimond SS, Van Miller JP, Shiotsuka RN, Beyer D, Hentges SG, Waechter JM Jr (2008) Two-generation reproductive toxicity study of dietary bisphenol A in CD-1 (Swiss) mice. Toxicol Sci 104:362–384

    PubMed  Google Scholar 

  6. Tyl RW, Myers CB, Marr MC, Thomas BF, Keimowitz AR, Brine DR, Veselica MM, Fail PA, Chang TY, Seely JC, Joiner RL, Butala JH, Dimond SS, Cagen SZ, Shiotsuka RN, Stropp GD, Waechter JM (2002) Three-generation reproductive toxicity study of dietary bisphenol A in CD Sprague-Dawley rats. Toxicol Sci 68:121–146

    PubMed  Google Scholar 

  7. NTP-CERHR monograph on the potential human reproductive and developmental effects of bisphenol A (2008) http://cerhr.niehs.nih.gov/chemicals/bisphenol

  8. Myers JP, vom Saal FS, Akingbemi BT, Arizono K, Belcher S, Colborn T, Chahoud I, Crain DA, Farabollini F, Guillette LJ Jr, Hassold T, Ho SM, Hunt PA, Iguchi T, Jobling S, Kanno J, Laufer H, Marcus M, McLachlan JA, Nadal A, Oehlmann J, Olea N, Palanza P, Parmigiani S, Rubin BS, Schoenfelder G, Sonnenschein C, Soto AM, Talsness CE, Taylor JA, Vandenberg LN, Vandenbergh JG, Vogel S, Watson CS, Welshons WV, Zoeller RT (2009) Why public health agencies cannot depend on good laboratory practices as a criterion for selecting data: the case of bisphenol A. Environ Health Perspect 117:309–315

    PubMed  Google Scholar 

  9. Tyl RW (2009) Basic exploratory research versus guideline-compliant studies used for hazard evaluation and risk assessment: bisphenol A as a case study. Environ Health Perspect 117:1644–1651

    PubMed  Google Scholar 

  10. Al-Hiyasat AS, Darmani H, Elbetieha AM (2002) Effects of bisphenol A on adult male mouse fertility. Eur J Oral Sci 110:163–167

    PubMed  Google Scholar 

  11. Al-Hiyasat AS, Darmani H, Elbetieha AM (2004) Leached components from dental composites and their effects on fertility of female mice. Eur J Oral Sci 112:267–272

    PubMed  Google Scholar 

  12. Pottenger LH, Domoradzki JY, Markham DA, Hansen SC, Cagen SZ, Waechter JM Jr (2000) The relative bioavailability and metabolism of bisphenol A in rats is dependent upon the route of administration. Toxicol Sci 54:3–18

    PubMed  Google Scholar 

  13. Moors S, Diel P, Degen GH (2006) Toxicokinetics of bisphenol A in pregnant DA/Han rats after single i.v. application. Arch Toxicol 80:647–655

    PubMed  Google Scholar 

  14. Doerge DR, Twaddle NC, Vanlandingham M, Fisher JW (2010) Pharmacokinetics of bisphenol A in neonatal and adult Sprague-Dawley rats. Toxicol Appl Pharmacol 247:158–165

    PubMed  Google Scholar 

  15. Schönfelder G, Wittfoht W, Hopp H, Talsness CE, Paul M, Chahoud I (2002) Parent bisphenol A accumulation in the human maternal-fetal-placental unit. Environ Health Perspect 110:A703–A707

    PubMed  Google Scholar 

  16. Takeuchi T, Tsutsumi O, Nakamura N, Ikezuki Y, Takai Y, Yano T, Taketani Y (2004) Gender difference in serum bisphenol A levels may be caused by liver UDP-glucuronosyltransferase activity in rats. Biochem Biophys Res Commun 325:549–554

    PubMed  Google Scholar 

  17. Völkel W, Colnot T, Csanády GA, Filser JG, Dekant W (2002) Metabolism and kinetics of bisphenol a in humans at low doses following oral administration. Chem Res Toxicol 15:1281–1287

    PubMed  Google Scholar 

  18. EFSA (2008) Toxicokinetics of bisphenol A: scientific opinion of the Panel on Food Additives, Flavourings, Processing Aids and Materials in contact with Food (AFC). EFSA J 759:1–10

    Google Scholar 

  19. Ginsberg G, Rice DC (2009) Does rapid metabolism ensure negligible risk from bisphenol A? Environ Health Perspect 117:1639–1643

    PubMed  Google Scholar 

  20. Takahashi O, Oishi S (2000) Disposition of orally administered 2,2-Bis (4-hydroxyphenyl) propane (Bisphenol A) in pregnant rats and the placental transfer to fetuses. Environ Health Perspect 108:931–935

    PubMed  Google Scholar 

  21. Watson CS, Bulayeva NN, Wozniak AL, Alyea RA (2007) Xenoestrogens are potent activators of nongenomic estrogenic responses. Steroids 72:124–134

    PubMed  Google Scholar 

  22. Honma S, Suzuki A, Buchanan DL, Katsu Y, Watanabe H, Iguchi T (2002) Low dose effect of in utero exposure to bisphenol A and diethylstilbestrol on female mouse reproduction. Reprod Toxicol 16:117–122

    PubMed  Google Scholar 

  23. Rubin BS, Murray MK, Damassa DA, King JC, Soto AM (2001) Perinatal exposure to low doses of bisphenol A affects body weight, patterns of estrous cyclicity, and plasma LH levels. Environ Health Perspect 109(7):675–680

    PubMed  Google Scholar 

  24. Vandenberg LN, Maffini MV, Schaeberle CM, Ucci AA, Sonnenschein C, Rubin BS, Soto AM (2008) Perinatal exposure to the xenoestrogen bisphenol-A induces mammary intraductal hyperplasias in adult CD-1 mice. Reprod Toxicol 26:210–219

    PubMed  Google Scholar 

  25. Long X, Steinmetz R, Ben-Jonathan N, Caperell-Grant A, Young PC, Nephew KP, Bigsby RM (2000) Strain differences in vaginal responses to the xenoestrogen bisphenol A. Environ Health Perspect 108:243–247

    PubMed  Google Scholar 

  26. Diel P, Schmidt S, Vollmer G, Janning P, Upmeier A, Michna H, Bolt HM, Degen GH (2004) Comparative responses of three rat strains (DA/Han, Sprague-Dawley and Wistar) to treatment with environmental estrogens. Arch Toxicol 78:183–193

    PubMed  Google Scholar 

  27. Lee HJ, Chattopadhyay S, Gong EY, Ahn RS, Lee K (2003) Antiandrogenic effects of bisphenol A and nonylphenol on the function of androgen receptor. Toxicol Sci 75:40–46

    PubMed  Google Scholar 

  28. Zoeller RT, Bansal R, Parris C (2005) Bisphenol-A, an environmental contaminant that acts as a thyroid hormone receptor antagonist in vitro, increases serum thyroxine, and alters RC3/neurogranin expression in the developing rat brain. Endocrinology 146:607–612

    PubMed  Google Scholar 

  29. Welshons WV, Thayer KA, Judy BM, Taylor JA, Curran EM, vom Saal FS (2003) Large effects from small exposures. I. Mechanisms for endocrine-disrupting chemicals with estrogenic activity. Environ Health Perspect 111:994–1006

    PubMed  Google Scholar 

  30. Talsness CE, Andrade AJ, Kuriyama SN, Taylor JA, vom Saal FS (2009) Components of plastic: experimental studies in animals and relevance for human health. Philos Trans R Soc Lond B Biol Sci 364:2079–2096

    PubMed  Google Scholar 

  31. Imanishi S, Manabe N, Nishizawa H, Morita M, Sugimoto M, Iwahori M, Miyamoto H (2003) Effects of oral exposure of bisphenol A on mRNA expression of nuclear receptors in murine placentae assessed by DNA microarray. J Reprod Dev 49:329–336

    PubMed  Google Scholar 

  32. Ryan BC, Hotchkiss AK, Crofton KM, Gray LE Jr (2010) In utero and lactational exposure to bisphenol A, in contrast to ethinyl estradiol, does not alter sexually dimorphic behavior, puberty, fertility, and anatomy of female LE rats. Toxicol Sci 114:133–148

    PubMed  Google Scholar 

  33. Markey CM, Coombs MA, Sonnenschein C, Soto AM (2003) Mammalian development in a changing environment: exposure to endocrine disruptors reveals the developmental plasticity of steroid-hormone target organs. Evol Dev 5:67–75

    PubMed  Google Scholar 

  34. Susiarjo M, Hassold TJ, Freeman E, Hunt PA (2007) Bisphenol A exposure in utero disrupts early oogenesis in the mouse. PLoS Genet 3:e5

    PubMed  Google Scholar 

  35. Newbold RR, Jefferson WN, Padilla-Banks E (2007) Long-term adverse effects of neonatal exposure to bisphenol A on the murine female reproductive tract. Reprod Toxicol 24:253–258

    PubMed  Google Scholar 

  36. Nikaido Y, Yoshizawa K, Danbara N, Tsujita-Kyutoku M, Yuri T, Uehara N, Tsubura A (2004) Effects of maternal xenoestrogen exposure on development of the reproductive tract and mammary gland in female CD-1 mouse offspring. Reprod Toxicol 18:803–811

    PubMed  Google Scholar 

  37. Hunt PA, Koehler KE, Susiarjo M, Hodges CA, Ilagan A, Voigt RC, Thomas S, Thomas BF, Hassold TJ (2003) Bisphenol A exposure causes meiotic aneuploidy in the female mouse. Curr Biol 13:546–553

    PubMed  Google Scholar 

  38. Akingbemi BT, Sottas CM, Koulova AI, Klinefelter GR, Hardy MP (2004) Inhibition of testicular steroidogenesis by the xenoestrogen bisphenol A is associated with reduced pituitary luteinizing hormone secretion and decreased steroidogenic enzyme gene expression in rat Leydig cells. Endocrinology 145:592–603

    PubMed  Google Scholar 

  39. Kawai K, Nozaki T, Nishikata H, Aou S, Takii M, Kubo C (2003) Aggressive behavior and serum testosterone concentration during the maturation process of male mice: the effects of fetal exposure to bisphenol A. Environ Health Perspect 111:175–178

    PubMed  Google Scholar 

  40. Della Seta D, Minder I, Belloni V, Aloisi AM, Dessì-Fulgheri F, Farabollini F (2006) Pubertal exposure to estrogenic chemicals affects behavior in juvenile and adult male rats. Horm Behav 50:301–307

    PubMed  Google Scholar 

  41. Kato H, Furuhashi T, Tanaka M, Katsu Y, Watanabe H, Ohta Y, Iguchi T (2006) Effects of bisphenol A given neonatally on reproductive functions of male rats. Reprod Toxicol 22:20–29

    PubMed  Google Scholar 

  42. Ema M, Fujii S, Furukawa M, Kiguchi M, Ikka T, Harazono A (2001) Rat two-generation reproductive toxicity study of bisphenol A. Reprod Toxicol 15:505–523

    PubMed  Google Scholar 

  43. Howdeshell KL, Furr J, Lambright CR, Wilson VS, Ryan BC, Gray LE Jr (2008) Gestational and lactational exposure to ethinyl estradiol, but not bisphenol A, decreases androgen-dependent reproductive organ weights and epididymal sperm abundance in the male long evans hooded rat. Toxicol Sci 102:371–382

    PubMed  Google Scholar 

  44. Vom Saal FS, Cooke PS, Buchanan DL, Palanza P, Thayer KA, Nagel SC, Parmigiani S, Welshons WV (1998) A physiologically based approach to the study of bisphenol A and other estrogenic chemicals on the size of reproductive organs, daily sperm production, and behavior. Toxicol Ind Health 14:239–260

    PubMed  Google Scholar 

  45. Markey CM, Luque EH, Munoz De Toro M, Sonnenschein C, Soto AM (2001) In utero exposure to bisphenol A alters the development and tissue organization of the mouse mammary gland. Biol Reprod 65:1215–1223

    PubMed  Google Scholar 

  46. Wadia PR, Vandenberg LN, Schaeberle CM, Rubin BS, Sonnenschein C, Soto AM (2007) Perinatal bisphenol A exposure increases estrogen sensitivity of the mammary gland in diverse mouse strains. Environ Health Perspect 115:592–598

    PubMed  Google Scholar 

  47. Lapensee EW, Tuttle TR, Fox SR, Ben-Jonathan N (2009) Bisphenol A at low nanomolar doses confers chemoresistance in estrogen receptor-alpha-positive and -negative breast cancer cells. Environ Health Perspect 117:175–180

    PubMed  Google Scholar 

  48. Ramos JG, Varayoud J, Kass L, Rodríguez H, Costabel L, Muñoz-De-Toro M, Luque EH (2003) Bisphenol A induces both transient and permanent histofunctional alterations of the hypothalamic-pituitary-gonadal axis in prenatally exposed male rats. Endocrinology 144:3206–3215

    PubMed  Google Scholar 

  49. Ho SM, Tang WY, Belmonte de Frausto J, Prins GS (2006) Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res 66:5624–5632

    PubMed  Google Scholar 

  50. Wetherill YB, Petre CE, Monk KR, Puga A, Knudsen KE (2002) The xenoestrogen bisphenol A induces inappropriate androgen receptor activation and mitogenesis in prostatic adenocarcinoma cells. Mol Cancer Ther 1:515–524

    PubMed  Google Scholar 

  51. Matthews J, Gustafsson JA (2003) Estrogen signaling: a subtle balance between ER alpha and ER beta. Mol Interv 3:281–292

    PubMed  Google Scholar 

  52. Welshons WV, Nagel SC, vom Saal FS (2006) Large effects from small exposures. III. Endocrine mechanisms mediating effects of bisphenol A at levels of human exposure. Endocrinology 147:S56–S69

    PubMed  Google Scholar 

  53. Uchida K, Suzuki A, Kobayashi Y, Buchanan D, Sato T, Watanabe H, Katsu Y, Suzuki J, Asaoka K, Mori C, Arizono K, Iguchi T (2002) Bisphenol-A administration during pregnancy results in fetal exposure in mice and monkeys. J Health Sci 48:579–582

    Google Scholar 

  54. Miksys SL, Tyndale RF (2002) Drug-metabolizing cytochrome P450s in the brain. J Psychiatry Neurosci 27:406–415

    PubMed  Google Scholar 

  55. Pang T, Atefy R, Sheen V (2008) Malformations of cortical development. Neurologist 14:181–191

    PubMed  Google Scholar 

  56. Nakamura K, Itoh K, Yaoi T, Fujiwara Y, Sugimoto T, Fushiki S (2006) Murine neocortical histogenesis is perturbed by prenatal exposure to low doses of Bisphenol A. J Neurosci Res 84:1197–1205

    PubMed  Google Scholar 

  57. Nakamura K, Itoh K, Sugimoto T, Fushiki S (2007) Prenatal exposure to bisphenol A affects adult murine neocortical structure. Neurosci Lett 420:100–105

    PubMed  Google Scholar 

  58. Garcia-Falgueras A, Pinos H, Collado P, Pasaro E, Fernandez R, Jordan CL, Segovia S, Guillamon A (2005) The role of the androgen receptor in CNS masculinisation. Brain Res 1035:13–23

    PubMed  Google Scholar 

  59. Kubo K, Arai O, Omura M, Watanabe R, Ogata R, Aou S (2003) Low dose effects of bisphenol A on sexual differentiation of the brain and behavior in rats. Neurosci Res 45:345–356

    PubMed  Google Scholar 

  60. Simerly RB (1989) Hormonal control of the development and regulation of tyrosine hydroxylase expression within a sexually dimorphic population of dopaminergic cells in the hypothalamus. Mol Brain Res 6:297–310

    PubMed  Google Scholar 

  61. Rubin BS, Lenkowski JR, Schaeberle CM, Vandenberg LN, Ronsheim PM, Soto AM (2006) Evidence of altered brain sexual differentiation in mice exposed perinatally to low, environmentally relevant levels of bisphenol A. Endocrinology 147:3681–3691

    PubMed  Google Scholar 

  62. Kubo K, Arai O, Ogata R, Omura M, Hori T, Aou S (2001) Exposure to bisphenol A during the fetal and suckling periods disrupts sexual differentiation of the locus coeruleus and of behavior in the rat. Neurosci Lett 304:73–76

    PubMed  Google Scholar 

  63. Nagao T, Saito Y, Usumi K, Kuwagata M, Imai K (1999) Reproductive function in rats exposed neonatally to bisphenol A and estradiol benzoate. Reprod Toxicol 13:303–311

    PubMed  Google Scholar 

  64. Ishido M, Masuo Y, Kunimoto M, Oka S, Morita M (2004) Bisphenol A causes hyperactivity in the rat concomitantly with impairment of tyrosine hydroxylase immunoreactivity. J Neurosci Res 76:423–433

    PubMed  Google Scholar 

  65. Kawato S (2004) Endocrine disrupters as disrupters of brain function: a neurosteroid viewpoint. Environ Sci 11:1–14

    PubMed  Google Scholar 

  66. MacLusky NJ, Hajszan T, Leranth C (2005) The environmental estrogen bisphenol A inhibits estradiol-induced hippocampal synaptogenesis. Environ Health Perspect 113:675–679

    PubMed  Google Scholar 

  67. Zhou R, Zhang Z, Zhu Y, Chen L, Sokabe M, Chen L (2009) Deficits in development of synaptic plasticity in rat dorsal striatum following prenatal and neonatal exposure to low-dose bisphenol A. Neuroscience 159:161–171

    PubMed  Google Scholar 

  68. Masuo Y, Ishido M, Morita M, Oka S (2004) Effects of neonatal treatment with 6-hydroxydopamine and endocrine disruptors on motor activity and gene expression in rats. Neural Plast 11:59–76

    PubMed  Google Scholar 

  69. Van der Kooij MA, Glennon JC (2007) Animal models concerning the role of dopamine in attention-deficit hyperactivity disorder. Neurosci Biobehav Rev 31:597–618

    PubMed  Google Scholar 

  70. Matsuda S, Saika S, Amano K, Shimizu E, Sajiki J (2010) Changes in brain monoamine levels in neonatal rats exposed to bisphenol A at low doses. Chemosphere 78:894–906

    PubMed  Google Scholar 

  71. Martini M, Miceli D, Gotti S, Viglietti-Panzica C, Fissore E, Palanza P, Panzica G (2010) Effects of perinatal administration of bisphenol A on the neuronal nitric oxide synthase expressing system in the hypothalamus and limbic system of CD1 mice. J Neuroendocrinol 22:1004–1012

    PubMed  Google Scholar 

  72. Ceccarelli I, Della Seta D, Fiorenzani P, Farabollini F, Aloisi AM (2007) Estrogenic chemicals at puberty change ERalpha in the hypothalamus of male and female rats. Neurotoxicol Teratol 29:108–115

    PubMed  Google Scholar 

  73. Kawai K, Murakami S, Senba E, Yamanaka T, Fujiwara Y, Arimura C, Nozaki T, Takii M, Kubo C (2007) Changes in estrogen receptors alpha and beta expression in the brain of mice exposed prenatally to bisphenol A. Regul Toxicol Pharmacol 47:166–170

    PubMed  Google Scholar 

  74. Nishizawa H, Manabe N, Morita M, Sugimoto M, Imanishi S, Miyamoto H (2003) Effects of in utero exposure to bisphenol A on expression of RARalpha and RXRalpha mRNAs in murine embryos. J Reprod Dev 49:539–545

    PubMed  Google Scholar 

  75. Charlier TD (2009) Importance of steroid receptor coactivators in the modulation of steroid action on brain and behaviour. Psychoneuroendocrinology 34(Suppl 1):S20–S29

    PubMed  Google Scholar 

  76. Xu X, Liu Y, Sadamatsu M, Tsutsumi S, Akaike M, Ushijima H, Kato N (2007) Perinatal bisphenol A affects the behavior and SRC-1 expression of male pups but does not influence on the thyroid hormone receptors and its responsive gene. Neurosci Res 58:149–155

    PubMed  Google Scholar 

  77. Ulrich-Lai YM, Herman JP (2009) Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci 10:397–409

    PubMed  Google Scholar 

  78. De Kloet ER, Karst H, Joëls M (2008) Corticosteroid hormones in the central stress response: quick-and – slow. Front Neuroendocrinol 29:268–272

    PubMed  Google Scholar 

  79. Handa RJ, Burgess LH, Kerr JE, O’Keefe JA (1994) Gonadal steroid hormone receptors and sex differences in the hypothalamo-pituitary-adrenal axis. Horm Behav 28:464–476

    PubMed  Google Scholar 

  80. McEwen BS, Alves SE (1999) Estrogen actions in the central nervous system. Endocr Rev 20:279–307

    PubMed  Google Scholar 

  81. Ahima RS, Garcia MM, Harlan RE (1992) Intracellular localization of corticosteroid receptors in brain: potential interactions with signal transduction pathways. Proc Soc Exp Biol Med 201:244–253

    PubMed  Google Scholar 

  82. Patchev VK, Hayashi S, Orikasa C, Almeida OF (1999) Ontogeny of gender-specific responsiveness to stress and glucocorticoids in the rat and its determination by the neonatal gonadal steroid environment. Stress 3:41–54

    PubMed  Google Scholar 

  83. Poimenova A, Markaki E, Rahiotis C, Kitraki E (2010) Corticosterone-regulated actions in the rat brain are affected by perinatal exposure to low dose of bisphenol A. Neuroscience 167:741–749

    PubMed  Google Scholar 

  84. Sencar-Cupović I, Milković S (1976) The development of sex differences in the adrenal morphology and responsiveness in stress of rats from birth to the end of life. Mech Ageing Dev 5:1–9

    PubMed  Google Scholar 

  85. Burgess LH, Handa RJ (1992) Chronic estrogen -induced alterations in adrenocorticotropin and corticosterone secretion, and glucocorticoid receptor-mediated functions in female rats. Endocrinology 131:1261–1269

    PubMed  Google Scholar 

  86. Carey MP, Deterd CH, de Koning J, Helmerhorst F, de Kloet ER (1995) The influence of ovarian steroids on hypothalamic-pituitary-adrenal regulation in the female rat. J Endocrinol 144:311–321

    PubMed  Google Scholar 

  87. Adriani W, Seta DD, Dessì-Fulgheri F, Farabollini F, Laviola G (2003) Altered profiles of spontaneous novelty seeking, impulsive behavior, and response to D-amphetamine in rats perinatally exposed to bisphenol A. Environ Health Perspect 111:395–401

    PubMed  Google Scholar 

  88. Farabollini F, Porrini S, Dessì-Fulgherit F (1999) Perinatal exposure to the estrogenic pollutant bisphenol A affects behavior in male and female rats. Pharmacol Biochem Behav 64:687–694

    PubMed  Google Scholar 

  89. Fujimoto T, Kubo K, Aou S (2006) Prenatal exposure to bisphenol A impairs sexual differentiation of exploratory behavior and increases depression-like behavior in rats. Brain Res 1068:49–55

    PubMed  Google Scholar 

  90. Gioiosa L, Fissore E, Ghirardelli G, Parmigiani S, Palanza P (2007) Developmental exposure to low-dose estrogenic endocrine disruptors alters sex differences in exploration and emotional responses in mice. Horm Behav 52:307–316

    PubMed  Google Scholar 

  91. Laviola G, Gioiosa L, Adriani W, Palanza P (2005) D-amphetamine-related reinforcing effects are reduced in mice exposed prenatally to estrogenic endocrine disruptors. Brain Res Bull 65:235–240

    PubMed  Google Scholar 

  92. Dessì-Fulgheri F, Porrini S, Farabollini F (2002) Effects of perinatal exposure to bisphenol A on play behavior of female and male juvenile rats. Environ Health Perspect 110(Suppl 3):403–407

    PubMed  Google Scholar 

  93. Porrini S, Belloni V, Della Seta D, Farabollini F, Giannelli G, Dessì-Fulgheri F (2005) Early exposure to a low dose of bisphenol A affects socio-sexual behavior of juvenile female rats. Brain Res Bull 65:261–266

    PubMed  Google Scholar 

  94. Tian YH, Baek JH, Lee SY, Jang CG (2010) Prenatal and postnatal exposure to bisphenol a induces anxiolytic behaviors and cognitive deficits in mice. Synapse 64:432–439

    PubMed  Google Scholar 

  95. Ryan BC, Vandenbergh JG (2006) Developmental exposure to environmental estrogens alters anxiety and spatial memory in female mice. Horm Behav 50:85–93

    PubMed  Google Scholar 

  96. Farabollini F, Porrini S, Della Seta D, Bianchi F, Dessì-Fulgheri F (2002) Effects of perinatal exposure to bisphenol A on sociosexual behavior of female and male rats. Environ Health Perspect 110(Suppl 3):409–414

    PubMed  Google Scholar 

  97. Della Seta D, Minder I, Dessì-Fulgheri F, Farabollini F (2005) Bisphenol-A exposure during pregnancy and lactation affects maternal behavior in rats. Brain Res Bull 65:255–260

    PubMed  Google Scholar 

  98. Aloisi AM, Della Seta D, Rendo C, Ceccarelli I, Scaramuzzino A, Farabollini F (2002) Exposure to the estrogenic pollutant bisphenol A affects pain behavior induced by subcutaneous formalin injection in male and female rats. Brain Res 937:1–7

    PubMed  Google Scholar 

  99. Cooke PS, Naaz A (2004) Role of estrogens in adipocyte development and function. Exp Biol Med (Maywood) 229:1127–1135

    Google Scholar 

  100. Nunez AA, Kannan K, Giesy JP, Fang J, Clemens LG (2001) Effects of bisphenol A on energy balance and accumulation in brown adipose tissue in rats. Chemosphere 42:917–922

    PubMed  Google Scholar 

  101. Alonso-Magdalena P, Morimoto S, Ripoll C, Fuentes E, Nadal A (2006) The estrogenic effect of bisphenol A disrupts pancreatic beta-cell function in vivo and induces insulin resistance. Environ Health Perspect 114:106–112

    PubMed  Google Scholar 

  102. Heindel JJ, vom Saal FS (2009) Role of nutrition and environmental endocrine disrupting chemicals during the perinatal period on the aetiology of obesity. Mol Cell Endocrinol 304:90–96

    PubMed  Google Scholar 

  103. Howdeshell KL, Hotchkiss AK, Thayer KA, Vandenbergh JG, vom Saal FS (1999) Exposure to bisphenol A advances puberty. Nature 401:763–764

    PubMed  Google Scholar 

  104. Miyawaki J, Sakayama K, Kato H, Yamamoto H, Masuno H (2007) Perinatal and postnatal exposure to bisphenol a increases adipose tissue mass and serum cholesterol level in mice. J Atheroscler Thromb 14:245–252

    PubMed  Google Scholar 

  105. Ryan KK, Haller AM, Sorrell JE, Woods SC, Jandacek RJ, Seeley RJ (2010) Perinatal exposure to bisphenol-a and the development of metabolic syndrome in CD-1 mice. Endocrinology 151:2603–2612

    PubMed  Google Scholar 

  106. Dolinoy DC, Huang D, Jirtle RL (2007) Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci U S A 104:13056–13061

    PubMed  Google Scholar 

  107. Takahashi O, Oishi S (2003) Testicular toxicity of dietarily or parenterally administered bisphenol A in rats and mice. Food Chem Toxicol 41:1035–1044

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efthymia Kitraki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kitraki, E. (2014). BPA Effects In Vivo: Evidence from Animal Studies. In: Eliades, T., Eliades, G. (eds) Plastics in Dentistry and Estrogenicity. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29687-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29687-1_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29686-4

  • Online ISBN: 978-3-642-29687-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics