Skip to main content

7.1 The End of Mass-Independent Fractionation of Sulphur Isotopes

  • Chapter
  • First Online:
Book cover Reading the Archive of Earth’s Oxygenation

Part of the book series: Frontiers in Earth Sciences ((FRONTIERS))

Abstract

The Archaean-Proterozoic transition is marked by a number of fundamental upheavals in respect to geological, tectonic, geochemical, biological and climatic aspects. Of these, the most significant change appears to be a substantial increase in atmospheric oxygen concentration initiating the irreversible oxygenation of our planet. It has been proposed that a major oxygenation event occurred during the early Palaeoproterozoic some 2.3 Ga ago, widely termed the “Great Oxidation Event” (“GOE”, Holland 1999, 2006). Evidence for this generally accepted view (but see Ohmoto 1999; Ohmoto et al. 2006, for a different view) stems from geological, mineralogical and geochemical data. Of these, the study of multiple sulphur isotopes, i.e. the analysis of all four stable isotopes of sulphur (32S, 33S, 34S and 36S) developed recently into the central approach for reconstructing the chemical composition of Earth’s early atmosphere, and secular variations thereof. Specifically, it has been suggested that mass-independently fractionated sulphur isotopes, archived in sediments of Archaean and early Paleoproterozoic age, provide a reliable tool for reconstructing past atmospheric oxygen concentrations (Farquhar et al. 2000; Pavlov and Kasting 2002; Ueno et al. 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bao H, Rumble D, Lowe DR (2007) The five stable isotope compositions of Fig Tree barites: implications on sulfur cycle in 3.2 Ga oceans. Geochim Cosmochim Acta 71:4868–4879

    Article  Google Scholar 

  • Bekker A, Kaufman AJ, Karhu JA, Beukes NJ, Swart QD, Coetzee LL, Eriksson KA (2001) Chemostratigraphy of the Paleoproterozoic Duitschland Formation, South Africa: implications for coupled climate change and carbon cycling. Am J Sci 301:261–285

    Article  Google Scholar 

  • Bekker A, Holland HD, Wang PL, Rumble D, Stein HJ, Hannah JL, Coetzee LL, Beukes NJ (2004) Dating the rise of atmospheric oxygen. Nature 427:117–120

    Article  Google Scholar 

  • Bluth GJ, Schnetzler CC, Krueger AJ, Walter LS (1993) The contribution of explosive volcanism to global atmospheric sulphur dioxide concentrations. Nature 366:327–329

    Article  Google Scholar 

  • Canfield DE (2001) Biogeochemistry of sulphur isotopes. In: Valley JW, Cole DR (eds) Stable isotope geochemistry, vol 43, Reviews in mineralogy and geochemistry. Geological Society of America, Washington, DC, pp 607–633

    Google Scholar 

  • Canfield DE (2004) The evolution of the Earth surface sulphur reservoir. Am J Sci 304:839–861

    Article  Google Scholar 

  • Cates N, Mojszis SJ (2006) Chemical and isotopic evidence for widespread Eoarchean metasedimentary enclaves in southern West Greenland. Geochim Cosmochim Acta 70:4229–4257

    Article  Google Scholar 

  • Clayton RN, Onuma N, Grossman L, Mayeda TK (1977) Distribution of pre-solar component in Allende and other carbonaceous chondrites. Earth Planet Sci Lett 34:209–224

    Article  Google Scholar 

  • Corfu F, Andrews AJ (1986) U–Pb age for mineralized Nipissing diabase, Gowganda, Ontario. Can J Earth Sci 23:107–109

    Article  Google Scholar 

  • Crowell JC (1999) Pre-Mesozoic ice ages; their bearing on understanding the climate system. Mem Geol Soc Am 192:1–106

    Google Scholar 

  • Domagal-Goldman SD, Kasting JF, Johnston DT, Farquhar J (2008) Organic haze, glaciations and multiple sulphur isotopes in the Mid-Archean Era. Earth Planet Sci Lett 269:29–40

    Article  Google Scholar 

  • Farquhar J, Wing BA (2003) Multiple sulphur isotopes and the evolution of the atmosphere. Earth Planet Sci Lett 213:1–13

    Article  Google Scholar 

  • Farquhar J, Bao H, Thiemens M (2000) Atmospheric influence of Earth’s earliest sulphur cycle. Science 289:756–758

    Article  Google Scholar 

  • Farquhar J, Savarino J, Airieau S, Thiemens MH (2001) Observation of wavelength sensitive mass-independent sulphur isotope effects during SO2 photolysis: implications for the early atmosphere. J Geophys Res 106:1–11

    Article  Google Scholar 

  • Farquhar J, Wing BA, McKeegan D, Harris JW, Cartigny P, Thiemens MH (2002) Mass-independent sulfur of inclusions in diamond and sulfur recycling on early Earth. Science 298:2369–2372

    Article  Google Scholar 

  • Farquhar J, Peters M, Johnston DT, Strauss H, Masterson A, Wiechert U, Kaufman AJ (2007) Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry. Nature 449:706–710

    Article  Google Scholar 

  • Frauenstein F, Veizer J, Beukes N, Van Niekerk HS, Coetzee LL (2009) Transvaal supergroup carbonates: implications for Paleoproterozoic δ18O and δ13C records. Precambrian Res 175:149–160

    Article  Google Scholar 

  • Grassineau NV, Nisbet EG, Bickle MJ, Fowler CMR, Lowry D, Mattey DP, Abell P, Martin A (2001) Antiquity of the biological sulphur cycle: evidence from sulphur and carbon isotopes in 2700 million year old rocks of the Belingwe belt, Zimbabwe. Proc Roy Soc Lond B268:113–119

    Article  Google Scholar 

  • Guo Q, Strauss H, Kaufman AJ, Schröder S, Gutzmer J, Wing B, Baker MA, Bekker A, Jin Q, Kim S-T, Farquhar J (2009) Reconstructing Earth’s surface oxidation across the Archean-Proterozoic transition. Geology 37:399–402

    Article  Google Scholar 

  • Hoefs J (2009) Stable isotope geochemistry. Springer, Heidelberg, p 285

    Google Scholar 

  • Holland HD (1999) When did the Earth’s atmosphere become oxic? A reply. Geochem News 100:20–22

    Google Scholar 

  • Holland HD (2006) The oxygenation of the atmosphere and oceans. Philos Trans Roy Soc Lond B361:903–915

    Google Scholar 

  • Hou KJ, Li YH, Wan DF (2007) Constraints on the Archean atmospheric oxygen and sulfur cycle from mass-independent sulfur records from Anshan-Benxi BIFs, Liaonig Province, China. Sci China Ser D Earth Sci 50:1471–1478

    Article  Google Scholar 

  • Hu G, Rumble D, Wang PL (2003) An ultraviolet laser microprobe for the in situ analysis of multisulfur isotopes and its use in measuring the Archean sulfur isotope mass-independent anomalies. Geochim Cosmochim Acta 67:3101–3117

    Article  Google Scholar 

  • Hulston JR, Thode HG (1965) Variations in the 33S, 34S, 36S contents of meteorites and their relation to chemical and nuclear effects. J Geophys Res 70:3475–3484

    Article  Google Scholar 

  • Jamiesson JW, Wing BA, Hanington MD, Farquhar J (2006) Evaluating isotopic equilibrium among sulfide mineral pairs in Archean ore deposits: case study from the Kidd Creek VMS deposit, Ontario, Canada. Econ Geol 101:1055–1061

    Article  Google Scholar 

  • Johnston DT, Wing BA, Farquhar J, Kaufman AJ, Strauss H, Lyons TW, Kah LC, Canfield DE (2005) Active microbial sulphur disproportionation in the Mesoproterozoic. Science 310:1477–1479

    Article  Google Scholar 

  • Johnston DT, Poulton SW, Farquhar J, Wing BA, Fralick PW, Canfield DE (2006) Evolution of the oceanic sulfur cycle in the late Paleoproterozoic. Geochim Cosmochim Acta 70:5723–5739

    Article  Google Scholar 

  • Johnston DT, Farquhar J, Summons R, Shen Y, Kaufman AJ, Masterson AL, Canfield DE (2008) Sulfur isotope biogeochemistry of the Proterozoic McArthur basin. Geochim Cosmochim Acta 72:4278

    Article  Google Scholar 

  • Kah LC, Lyons TW, Frank TD (2004) Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature 431:834–838

    Article  Google Scholar 

  • Kamber BS, Whitehouse MJ (2007) Micro scale sulphur isotope evidence for sulphur cycling in the late Archean shallow ocean. Geobiology 5:5–17

    Article  Google Scholar 

  • Kasting JF, Zahnle KJ, Pinto JP, Young AT (1989) Sulfur ultraviolet radiation, and the early evolution of life. Orig Life 19:95–108

    Article  Google Scholar 

  • Kaufman AJ, Johnston DT, Farquhar J, Masterson AL, Lyons TW, Bates S, Anbar AD, Arnold GL, Buick R (2007) Late Archean biospheric oxygenation and atmospheric evolution. Science 317:1900–1903

    Article  Google Scholar 

  • Krogh TE, Davis DW, Corfu F (1984) Precise U–Pb zircon and baddeleyite ages for the Sudbury area. In: Pye EG, Naldrett AJ, Gilblin PE (eds) The geology and ore deposits of the Sudbury structure, Ontario Geological Survey, Sudbury. Geol Surv Spec Pap 1:431–446

    Google Scholar 

  • Lyons TW, Gill BC (2010) Ancient sulfur cycling and oxygenation of the early biosphere. Elements 6:93–99

    Article  Google Scholar 

  • Lyons TW, Kah LC, Gellatly AM (2004) The Precambrian sulphur isotope record of evolving atmospheric oxygen. In: Eriksson PG et al (eds) The Precambrian earth: tempos and events, developments in Precambrian geology. Elsevier, Amsterdam, pp 421–440

    Google Scholar 

  • Mojzsis SJ, Coath CD, Greenwood JP, McKeegan KD, Harrison TM (2003) Mass-independent isotope effects in Archean (2.5 to 3.8 Ga) sedimentary sulphides determined by ion microprobe analysis. Geochim Cosmochim Acta 67:1635–1658

    Article  Google Scholar 

  • Ohmoto H (1999) When did the Earth’s atmosphere become oxic? Geochem News 93:12–27

    Google Scholar 

  • Ohmoto H, Watanabe Y, Ikemi H, Poulson SR, Taylor BE (2006) Sulphur isotope evidence for an oxic Archaean atmosphere. Nature 442:908–911

    Article  Google Scholar 

  • Ono S, Eigenbrode JL, Pavlov AA, Kharecha P, Rumble D, Kasting JF, Freeman KH (2003) New insights into Archean sulphur cycle from mass-independent sulphur isotope records from the Hamersley Basin, Australia. Earth Planet Sci Lett 213:15–30

    Article  Google Scholar 

  • Ono S, Boswell W, Johnston DT, Farquhar J, Rumble D (2006) Mass-dependent fractionation of quadruple stable sulfur isotope system as a new tracer for sulfur biogeochemical cycles. Geochim Cosmochim Acta 70:2238–2252

    Article  Google Scholar 

  • Ono S, Shanks WC, Rouxel OJ, Rumble D (2007) 33S constraints on the seawater sulfate contribution in modern seafloor hydrothermal vent sulfides. Geochim Cosmochim Acta 71:1170–1182

    Article  Google Scholar 

  • Ono S, Kaufman AJ, Farquhar J, Sumner DY, Beukes NJ (2009a) Lithofacies control on multiple-sulphur isotope records and Neoarchean sulphur cycles. Precambrian Res 169:58–67

    Article  Google Scholar 

  • Ono S, Beukes NJ, Rumble D (2009b) Origin of two distinct multiple-sulphur isotope compositions of pyrite in the 2.5 Ga Klein Naute Formation, Griqualand West Basin, South Africa. Precambrian Res 169:48–57

    Article  Google Scholar 

  • Papineau D, Mojzsis SJ (2006) Mass-independent fractionation of sulfur isotopes in sulfides from the pre-3770 Ma Isua Supercrustal Belt, West Greenland. Geobiology 4:227–238

    Article  Google Scholar 

  • Papineau D, Mojzsis SJ, Coath CD, Karhu JA, McKeegan KD (2005) Multiple sulphur isotopes of sulfides from sediments in the aftermath of Paleoproterozoic glaciations. Geochim Cosmochim Acta 69:5033–5060

    Article  Google Scholar 

  • Papineau D, Mojzsis SJ, Schmitt AK (2007) Multiple sulphur isotopes from Paleoproterozoic Huronian interglacial sediments and the rise of atmospheric oxygen. Earth Planet Sci Lett 255:188–212

    Article  Google Scholar 

  • Partridge MA, Golding SD, Baublys KA, Young E (2008) Pyrite paragenesis and multiple sulfur isotope distribution in late Archean and early Paleoproterozoic Hamersley Basin sediments. Earth Planet Sci Lett 272:44–49

    Article  Google Scholar 

  • Pavlov A, Kasting J (2002) Mass-independent fractionation of sulphur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2:27–41

    Article  Google Scholar 

  • Philippot P, van Zuilen M, Lepot K, Thomazo C, Farquhar J, van Kranendonk M (2007) Early Archean microorganisms preferred elemental sulfur not sulfate. Science 317:1534–1537

    Article  Google Scholar 

  • Schröder S, Bekker A, Beukes NJ, Strauss H, van Niekerk HS (2008) Rise in seawater sulphate concentration associated with Paleoproterozoic positive carbon excursion: evidence from sulphate evaporites in the 2.2–2.1 Gyr shallow marine Lucknow Formation, South Africa. Terra Nova 20:108–117

    Article  Google Scholar 

  • Shen YN, Farquhar J, Masterson A, Kaufman AJ, Buick R (2009) Evaluating the role of microbial sulfate reduction in the early Archean using quadruple isotope systematics. Earth Planet Sci Lett 279:383–391

    Article  Google Scholar 

  • Strauss H (2002) The isotopic composition of Precambrian sulphides – seawater chemistry and biological evolution. Spec Publ Int Assoc Sediment 33:67–105

    Google Scholar 

  • Strauss H (2004) 4 Ga of seawater evolution: evidence from the sulphur isotopic composition of sulphate. In: Amend JP, Edwards KJ, Lyons TW (eds) Sulphur biogeochemistry-past and present. Geological Society of America, Boulder, pp 195–205

    Chapter  Google Scholar 

  • Thiemens MH, Heidenreich JE (1983) The mass-independent fractionation of oxygen; a novel isotope effect and its possible cosmochemical implications. Science 219:1073–1075

    Article  Google Scholar 

  • Thomazo C, Ader M, Farquhar J, Philippot P (2009) Methanotrophs regulated atmospheric sulfur isotope anomalies during the Mesoarchean (Tumbiana Formation, Western Australia). Earth Planet Sci Lett 279:65–75

    Article  Google Scholar 

  • Ueno Y, Johnson MS, Danielache SO, Eskebjerg C, Pandey A, Yoshida N (2009) Geological sulphur isotopes indicate elevated OCS in the Archean atmosphere, solving the faint young sun paradox. Proc Natl Acad Sci 106:14784–14789

    Article  Google Scholar 

  • Whitehouse MJ, Kamber BS, Fedo CM, Lepland A (2005) Integrated Pb- and S-isotope investigation of sulphide minerals from the early Archean of southwest Greenland. Chem Geol 222:112–131

    Article  Google Scholar 

  • Young GM (1988) Proterozoic plate-tectonics, glaciation and iron formations. Sediment Geol 58:127–144

    Article  Google Scholar 

  • Zahnle K, Claire M, Catling D (2006) The loss of mass-independent fractionation in sulphur due to a Paleoproterozoic collapse of atmospheric methane. Geobiology 4:271–283

    Article  Google Scholar 

  • Zerkle AL, Farquhar J, Johnston DT, Raymond CP, Canfield DE (2009) Fractionation of multiple sulfur isotopes during phototrophic oxidation of sulfide and elemental sulfur by a green sulfur bacterium. Geochim Cosmochim Acta 73:291–306

    Article  Google Scholar 

  • Zerkle AL, Kamyshny A Jr, Kump LR, Farqhuar J, Oduro H, Arthur MA (2010) Sulfur cycling in a stratified euxinic lake with moderately high sulfate: constraints from quadruple S isotopes. Geochim Cosmochim Acta 74:4953–4970

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Strauss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reuschel, M., Strauss, H., Lepland, A. (2013). 7.1 The End of Mass-Independent Fractionation of Sulphur Isotopes. In: Melezhik, V., et al. Reading the Archive of Earth’s Oxygenation. Frontiers in Earth Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29670-3_1

Download citation

Publish with us

Policies and ethics