Advertisement

Simulations of VANET Scenarios with OPNET and SUMO

  • Florent Kaisser
  • Christophe Gransart
  • Marion Berbineau
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7266)

Abstract

Vehicular Ad hoc Networks (vanet) are a special kind of Mobile Ad-Hoc Networks (manet) adapted to the communications between vehicles. Several specific protocols to vanets have been developed to improve performances and satisfy vehicular application needs. To evaluate a protocol for vanet, some realistic mobility models are needed. Unfortunately, such models are not provided by Opnet Modeler. In this work, we propose a framework that enhances Opnet Modeler simulation scenario using realistic vehicular mobility models. This framework makes use of the open source software called “Simulation of Urban MObility” (sumo) and the “input trajectory files” feature of Opnet Modeler.

Keywords

VANET Opnet SUMO simulation framework dissemination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Olariu, S., Weigle, M.C.: Vehicular Networks: From Theory to Practice. Chapman & Hall and CRC (2009)Google Scholar
  2. 2.
    Martinez, F.J., Toh, C.K., Cano, J.C., Calafate, C.T., Manzoni, P.: A survey and comparative study of simulators for vehicular ad hoc networks (vanets). Wireless Communications and Mobile Computing 11(7), 813–828 (2011)CrossRefGoogle Scholar
  3. 3.
    SWANS++: Extensions to the scalable wireless ad-hoc network simulator, http://www.aqualab.cs.northwestern.edu/projects/swans++/ (Online; accessed January 2, 2012)
  4. 4.
    Jist/Swans: Java in simulation time/scalable wireless ad hoc network simulator, http://jist.ece.cornell.edu (Online; accessed January 2, 2012)
  5. 5.
    Choffnes, D.R., Bustamante, F.E.: An integrated mobility and traffic model for vehicular wireless networks. In: Proceedings of the 2nd ACM International Workshop on Vehicular Ad Hoc Networks, pp. 69–78. ACM (2005)Google Scholar
  6. 6.
    TIGER: Topologically integrated geographic encoding and referencing, http://www.census.gov/geo/www/tiger/ (Online; accessed January 2, 2012)
  7. 7.
    Mangharam, R., Weller, D.S., Stancil, D.D., Rajkumar, R., Parikh, J.S.: Groovesim: A topography-accurate simulator for geographic routing in vehicular networks. In: Proceedings of the 2nd ACM International Workshop on Vehicular Ad Hoc Networks, pp. 59–68 (2005)CrossRefGoogle Scholar
  8. 8.
    Roadnav, http://roadnav.sourceforge.net (Online; accessed January 2, 2012)
  9. 9.
    Piorkowski, M., Raya, M., Lugo, A.L., Papadimitratos, P., Grossglauser, M., Hubaux, J.P.: Trans: realistic joint traffic and network simulator for vanets. ACM SIGMOBILE Mobile Computing and Communications Review 12(1), 31–33 (2008)CrossRefGoogle Scholar
  10. 10.
    NS2: the network simulator, http://www.isi.edu/nsnam/ns (Online; accessed January 2, 2012)
  11. 11.
    Karnadi, F.K., Mo, Z.H., Lan, K.: Rapid generation of realistic mobility models for VANET. In: IEEE Wireless Communications and Networking Conference, WCNC 2007, pp. 2506–2511 (2007)Google Scholar
  12. 12.
    Sommer, C., Yao, Z., German, R., Dressler, F.: Simulating the influence of ivc on road traffic using bidirectionally coupled simulators. In: IEEE INFOCOM Workshops 2008, pp. 1–6. IEEE (2008)Google Scholar
  13. 13.
    OMNeT++ community site, http://www.omnetpp.org (Online; accessed January 2, 2012)
  14. 14.
    itetris test-beds, http://www.ict-itetris.eu/platform.htm (Online; accessed January 2, 2012]
  15. 15.
    The ns-3 network simulator, http://www.nsnam.org (Online; accessed January 2, 2012)
  16. 16.
    SUMO - Simulation of Urban MObility (2012), http://sumo.sourceforge.net (Online; accessed January 2, 2012)
  17. 17.
    Krauß, S.: Microscopic modeling of traffic flow: Investigation of collision free vehicle dynamics (1998)Google Scholar
  18. 18.
    Wagner, P., Lubashevsky, I.: Empirical basis for car-following theory development. Arxiv preprint cond-mat/0311192 (2003)Google Scholar
  19. 19.
    Kerner, B.S.: Introduction to modern traffic flow theory and control: the long road to three-phase traffic theory. Springer (2009)Google Scholar
  20. 20.
    Treiber, M., Hennecke, A., Helbing, D.: Congested traffic states in empirical observations and microscopic simulations. Physical Review E 62(2), 1805 (2000)CrossRefGoogle Scholar
  21. 21.
    Haklay, M., Weber, P.: Openstreetmap: User-generated street maps. IEEE Pervasive Computing 7(4), 12–18 (2008)CrossRefGoogle Scholar
  22. 22.
    Kim, T.-H., Hong, W.-K., Kim, H.-C.: An Effective Multi-hop Broadcast in Vehicular Ad-Hoc Network. In: Lukowicz, P., Thiele, L., Tröster, G. (eds.) ARCS 2007. LNCS, vol. 4415, pp. 112–125. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Briesemeister, L., Schafers, L., Hommel, G.: Disseminating messages among highly mobile hosts based on inter-vehicle communication. In: 2000 IEEE Intelligent Vehicles Symposium, Dearborn, MI, USA, pp. 522–527 (2000)Google Scholar
  24. 24.
    Sun, M.-T., Feng, W.-C., Lai, T.-H., Yamada, K., Okada, H., Fujimura, K.: Gps-based message broadcasting for inter-vehicle communication. In: Proceedings 2000 International Conference on Parallel Processing, Toronto, Canada, pp. 279–286. IEEE Computer Society (2000)Google Scholar
  25. 25.
    Hrizi, F., Filali, F.: Achieving broadcasting efficiency in v2x networks with a distance-based protocol. In: 2009 IEEE Communications and Networking (ComNet), Hammamet, Tunisia, pp. 1–8 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Florent Kaisser
    • 1
    • 2
  • Christophe Gransart
    • 1
    • 2
  • Marion Berbineau
    • 1
    • 2
  1. 1.Univ Lille Nord de FranceLilleFrance
  2. 2.IFSTTAR, LEOSTVilleneuve d’AscqFrance

Personalised recommendations