Advertisement

Toward Revocation Data Handling Efficiency in VANETs

  • Carlos Gañán
  • Jose L. Muñoz
  • Oscar Esparza
  • Jorge Mata-Díaz
  • Juanjo Alins
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7266)

Abstract

Vehicular Ad Hoc Networks (VANETs) require some mechanism to authenticate messages, identify valid vehicles, and remove misbehaving ones. A Public Key Infrastructure (PKI) can provide this functionality using digital certificates, but needs an efficient mechanism to revoked misbehaving/compromised vehicles. The IEEE 1609.2 standard states that VANETs will rely on the use of certificate revocation lists (CRLs) to achieve revocation. However, despite their simplicity, CRLs present two major disadvantages that are highlighted in a vehicular network: CRL size and CRL request implosion. In this paper, we point out the problems when using CRLs in this type of networks. To palliate these issues, we propose the use of Authenticated Data Structures (ADS) that allow distributing efficiently revocation data. By using ADS, network entities can check the status of a certificate decreasing the peak bandwidth load in the distribution points.

Keywords

Certification PKI Authenticated Data Structures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jiang, D., Delgrossi, L.: IEEE 802.11p: Towards an International Standard for Wireless Access in Vehicular Environments. In: IEEE Vehicular Technology Conference, VTC Spring 2008, pp. 2036–2040 (May 2008)Google Scholar
  2. 2.
    Raya, M., Hubaux, J.-P.: The security of vehicular ad hoc networks. In: Proceedings of the 3rd ACM Workshop on Security of Ad Hoc And Sensor Networks, SASN 2005, pp. 11–21 (2005)Google Scholar
  3. 3.
    Papadimitratos, P., Buttyan, L., Hubaux, J.-P., Kargl, F., Kung, A., Raya, M.: Architecture for secure and private vehicular communications. In: 7th International Conference on ITS Telecommunications, pp. 1–6 (June 2007)Google Scholar
  4. 4.
    IEEE trial-use standard for wireless access in vehicular environments - security services for applications and management messages. IEEE Std 1609.2-2006, pp. 1–105 (2006)Google Scholar
  5. 5.
    Haas, J.J., Hu, Y.-C., Laberteaux, K.P.: Design and analysis of a lightweight certificate revocation mechanism for vanet. In: Proceedings of the Sixth ACM International Workshop on VehiculAr InterNETworking, VANET 2009, pp. 89–98. ACM, New York (2009)CrossRefGoogle Scholar
  6. 6.
    Bureau of Transportation Statistics U.S. Department of Transportation. Number of U.S. aircraft, vehicles, vessels, and other conveyances (2009), http://www.bts.gov/publications/national_transportation_statistics/html/table_01_11.html (Online; accessed July 31, 2011)
  7. 7.
    Merkle, R.C.: A Certified Digital Signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)Google Scholar
  8. 8.
    Naor, M., Nissim, K.: Certificate Revocation and Certificate Update. IEEE Journal on Selected Areas in Communications 18(4), 561–570 (2000)CrossRefGoogle Scholar
  9. 9.
    Benaloh, J.C., de Mare, M.: One-Way Accumulators: A Decentralized Alternative to Digital Signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 274–285. Springer, Heidelberg (1994)Google Scholar
  10. 10.
    Pugh, W.: Skip lists: a probabilistic alternative to balanced trees. Commun. ACM 33, 668–676 (1990)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Carlos Gañán
    • 1
  • Jose L. Muñoz
    • 1
  • Oscar Esparza
    • 1
  • Jorge Mata-Díaz
    • 1
  • Juanjo Alins
    • 1
  1. 1.Departament Enginyeria TelemáticaUniversitat Politécnica de CatalunyaSpain

Personalised recommendations