Assessing the Impact of Hierarchy on Model Understandability – A Cognitive Perspective

  • Stefan Zugal
  • Jakob Pinggera
  • Barbara Weber
  • Jan Mendling
  • Hajo A. Reijers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7167)


Modularity is a widely advocated strategy for handling complexity in conceptual models. Nevertheless, a systematic literature review revealed that it is not yet entirely clear under which circumstances modularity is most beneficial. Quite the contrary, empirical findings are contradictory, some authors even show that modularity can lead to decreased model understandability. In this work, we draw on insights from cognitive psychology to develop a framework for assessing the impact of hierarchy on model understandability. In particular, we identify abstraction and the split-attention effect as two opposing forces that presumably mediate the influence of modularity. Based on our framework, we describe an approach to estimate the impact of modularization on understandability and discuss implications for experiments investigating the impact of modularization on conceptual models.


Business Process Cognitive Load Systematic Literature Review Model Size Composite State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Parnas, D.L.: On the Criteria to be Used in Decomposing Systems into Modules. Communications of the ACM 15, 1053–1058 (1972)CrossRefGoogle Scholar
  2. 2.
    van der Aalst, W., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow Language. Information Systems 30, 245–275 (2005)CrossRefGoogle Scholar
  3. 3.
    Davies, R.: Business Process Modelling With Aris: A Practical Guide. Springer (2001)Google Scholar
  4. 4.
    Damij, N.: Business process modelling using diagrammatic and tabular techniques. Business Process Management Journal 13, 70–90 (2007)CrossRefGoogle Scholar
  5. 5.
    Sharp, A., McDermott, P.: Workfllow Modeling: Tools for Process Improvement and Application Development. Artech House (2011)Google Scholar
  6. 6.
    Kock, N.F.: Product flow, breadth and complexity of business processes: An empirical study of 15 business processes in three organizations. Business Process Re-engineering & Management Journal 2, 8–22 (1996)CrossRefGoogle Scholar
  7. 7.
    Mendling, J., Reijers, H.A., van der Aalst, W.M.P.: Seven process modeling guidelines (7pmg). Information & Software Technology 52, 127–136 (2010)CrossRefGoogle Scholar
  8. 8.
    Cruz-Lemus, J.A., Genero, M., Manso, M.E., Piattini, M.: Evaluating the Effect of Composite States on the Understandability of UML Statechart Diagrams. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, pp. 113–125. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Cruz-Lemus, J.A., Genero, M., Manso, M.E., Morasca, S., Piattini, M.: Assessing the understandability of UML statechart diagrams with composite states—A family of empirical studies. Empir. Software Eng. 25, 685–719 (2009)CrossRefGoogle Scholar
  10. 10.
    Burton-Jones, A., Meso, P.N.: Conceptualizing systems for understanding: An empirical test of decomposition principles in object-oriented analysis. ISR 17, 38–60 (2006)CrossRefGoogle Scholar
  11. 11.
    Brereton, P., Kitchenham, B.A., Budgen, D., Turner, M., Khalil, M.: Lessons from applying the systematic literature review process within the software engineering domain. JSS 80, 571–583 (2007)Google Scholar
  12. 12.
    Cruz-Lemus, J., Genero, M., Piattini, M.: Using Controlled Experiments for Validating UML Statechart Diagrams Measures. In: Cuadrado-Gallego, J.J., Braungarten, R., Dumke, R.R., Abran, A. (eds.) IWSM-Mensura 2007. LNCS, vol. 4895, pp. 129–138. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Cruz-Lemus, J., Genero, M., Piattini, M., Toval, A.: Investigating the nesting level of composite states in uml statechart diagrams. In: Proc. QAOOSE 2005, pp. 97–108 (2005)Google Scholar
  14. 14.
    Shoval, P., Danoch, R., Balabam, M.: Hierarchical entity-relationship diagrams: the model, method of creation and experimental evaluation. Requirements Engineering 9, 217–228 (2004)CrossRefGoogle Scholar
  15. 15.
    Moody, D.L.: Cognitive Load Effects on End User Understanding of Conceptual Models: An Experimental Analysis. In: Benczúr, A.A., Demetrovics, J., Gottlob, G. (eds.) ADBIS 2004. LNCS, vol. 3255, pp. 129–143. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Reijers, H., Mendling, J., Dijkman, R.: Human and automatic modularizations of process models to enhance their comprehension. Inf. Systems 36, 881–897 (2011)CrossRefGoogle Scholar
  17. 17.
    Reijers, H., Mendling, J.: Modularity in Process Models: Review and Effects. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 20–35. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Cruz-Lemus, J.A., Genero, M., Morasca, S., Piattini, M.: Using Practitioners for Assessing the Understandability of UML Statechart Diagrams with Composite States. In: Hainaut, J.-L., Rundensteiner, E.A., Kirchberg, M., Bertolotto, M., Brochhausen, M., Chen, Y.-P.P., Cherfi, S.S.-S., Doerr, M., Han, H., Hartmann, S., Parsons, J., Poels, G., Rolland, C., Trujillo, J., Yu, E., Zimányie, E. (eds.) ER Workshops 2007. LNCS, vol. 4802, pp. 213–222. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Cruz-Lemus, J.A., Genero, M., Piattini, M., Toval, A.: An Empirical Study of the Nesting Level of Composite States Within UML Statechart Diagrams. In: Akoka, J., Liddle, S.W., Song, I.-Y., Bertolotto, M., Comyn-Wattiau, I., van den Heuvel, W.-J., Kolp, M., Trujillo, J., Kop, C., Mayr, H.C. (eds.) ER Workshops 2005. LNCS, vol. 3770, pp. 12–22. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Larkin, J.H., Simon, H.A.: Why a Diagram is (Sometimes) Worth Ten Thousand Words. Cognitive Science 11, 65–100 (1987)CrossRefGoogle Scholar
  21. 21.
    Tracz, W.J.: Computer programming and the human thought process. Software: Practice and Experience 9, 127–137 (1979)zbMATHCrossRefGoogle Scholar
  22. 22.
    Miller, G.: The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing Information. The Psychological Review 63, 81–97 (1956)CrossRefGoogle Scholar
  23. 23.
    Sweller, J.: Cognitive load during problem solving: Effects on learning. Cognitive Science 12, 257–285 (1988)CrossRefGoogle Scholar
  24. 24.
    Paas, F., Tuovinen, J.E., Tabbers, H., Gerven, P.W.M.V.: Cognitive Load Measurement as a Means to Advance Cognitive Load Theory. Educational Psychologist 38, 63–71 (2003)CrossRefGoogle Scholar
  25. 25.
    Wand, Y., Weber, R.: An ontological model of an information system. IEEE TSE 16, 1282–1292 (1990)Google Scholar
  26. 26.
    Sweller, J., Chandler, P.: Why Some Material Is Difficult to Learn. Cognition and Instruction 12, 185–233 (1994)CrossRefGoogle Scholar
  27. 27.
    Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE Trans. Softw. Eng. 20, 476–493 (1994)CrossRefGoogle Scholar
  28. 28.
    Reijers, H.A., Mendling, J.: A Study into the Factors that Influence the Understandability of Business Process Models. SMCA 41, 449–462 (2011)Google Scholar
  29. 29.
    Melcher, J., Mendling, J., Reijers, H.A., Seese, D.: On Measuring the Understandability of Process Models. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43, pp. 465–476. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Stefan Zugal
    • 1
  • Jakob Pinggera
    • 1
  • Barbara Weber
    • 1
  • Jan Mendling
    • 2
  • Hajo A. Reijers
    • 3
  1. 1.University of InnsbruckAustria
  2. 2.Humboldt-Universität zu BerlinGermany
  3. 3.Eindhoven University of TechnologyThe Netherlands

Personalised recommendations